Penalized log-likelihood estimation for partly linear transformation models with current status data

被引:45
|
作者
Ma, SG
Kosorok, MR
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
来源
ANNALS OF STATISTICS | 2005年 / 33卷 / 05期
关键词
current status data; empirical processes; nonparametric regression; semiparametric efficiency; splines; transformation models;
D O I
10.1214/009053605000000444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider partly linear transformation models applied to current status data. The unknown quantities are the transformation function, a linear regression parameter and a nonparametric regression effect. It is shown that the penalized MLE for the regression parameter is asymptotically normal and efficient and converges at the parametric rate, although the penalized MLE for the transformation function and nonparametric regression effect are only n(1/3) consistent. Inference for the regression parameter based on a block jackknife is investigated. We also study computational issues and demonstrate the proposed methodology with a simulation study. The transformation models and partly linear regression terms, coupled with new estimation and inference techniques, provide flexible alternatives to the Cox model for current status data analysis.
引用
收藏
页码:2256 / 2290
页数:35
相关论文
共 50 条
  • [41] Nonconcave penalized estimation for partially linear models with longitudinal data
    Yang, Yiping
    Li, Gaorong
    Lian, Heng
    STATISTICS, 2016, 50 (01) : 43 - 59
  • [42] Penalized contrast estimation in functional linear models with circular data
    Brunel, E.
    Roche, A.
    STATISTICS, 2015, 49 (06) : 1298 - 1321
  • [43] Multi Stage Log-Likelihood Ratio Estimation With Ordering in A Non-linear Receiver For Overloaded MIMO Systems
    Denno, Satoshi
    Manabe, Shuhei
    Hou, Yafei
    2023 26TH INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS, WPMC, 2023, : 40 - 45
  • [44] The sparse estimation of the semiparametric linear transformation model with dependent current status data
    Luo, Lin
    Yu, Jinzhao
    Zhao, Hui
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (04) : 759 - 779
  • [45] Adaptive LASSO for linear mixed model selection via profile log-likelihood
    Pan, Juming
    Shang, Junfeng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (08) : 1882 - 1900
  • [46] Modulation Classification for QAM Signals Based on Log-likelihood estimation in NCA environments
    Li, Huijuan
    Wang, Qian
    Yan, Xiao
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEM-SOLVING (ICCP), 2013, : 437 - 440
  • [47] A weighted composite log-likelihood approach to parametric estimation of the extreme quantiles of a distribution
    Michael L. Stein
    Extremes, 2023, 26 : 469 - 507
  • [48] A new algorithm for the maximum likelihood estimation of graphical log-linear models
    Rudas, T
    COMPUTATIONAL STATISTICS, 1998, 13 (04) : 529 - 537
  • [49] Local linear estimation in partly linear models
    Hamilton, SA
    Truong, YK
    JOURNAL OF MULTIVARIATE ANALYSIS, 1997, 60 (01) : 1 - 19
  • [50] Sieve Maximum Likelihood Estimation of Partially Linear Transformation Models With Interval-Censored Data
    Yuan, Changhui
    Zhao, Shishun
    Li, Shuwei
    Song, Xinyuan
    STATISTICS IN MEDICINE, 2024,