Penalized log-likelihood estimation for partly linear transformation models with current status data

被引:45
|
作者
Ma, SG
Kosorok, MR
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
来源
ANNALS OF STATISTICS | 2005年 / 33卷 / 05期
关键词
current status data; empirical processes; nonparametric regression; semiparametric efficiency; splines; transformation models;
D O I
10.1214/009053605000000444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider partly linear transformation models applied to current status data. The unknown quantities are the transformation function, a linear regression parameter and a nonparametric regression effect. It is shown that the penalized MLE for the regression parameter is asymptotically normal and efficient and converges at the parametric rate, although the penalized MLE for the transformation function and nonparametric regression effect are only n(1/3) consistent. Inference for the regression parameter based on a block jackknife is investigated. We also study computational issues and demonstrate the proposed methodology with a simulation study. The transformation models and partly linear regression terms, coupled with new estimation and inference techniques, provide flexible alternatives to the Cox model for current status data analysis.
引用
收藏
页码:2256 / 2290
页数:35
相关论文
共 50 条
  • [1] A note on bimodality in the log-likelihood function for penalized spline mixed models
    Welham, S. J.
    Thompson, R.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 920 - 931
  • [2] Improving logistic regression on the imbalanced data by a novel penalized log-likelihood function
    Zhang, Lili
    Geisler, Trent
    Ray, Herman
    Xie, Ying
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (13) : 3257 - 3277
  • [3] Efficient estimation of a linear transformation model for current status data via penalized splines
    Lu, Minggen
    Liu, Yan
    Li, Chin-Shang
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (01) : 3 - 14
  • [4] Efficient Estimation for Linear Transformation Models with Current Status Data
    Zhang, Bin
    Tong, Xingwei
    Zhang, Jing
    Wang, Chunjie
    Sun, Jianguo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (17) : 3191 - 3203
  • [5] A penalized likelihood approach for efficiently estimating a partially linear additive transformation model with current status data
    Liu, Yan
    Lu, Minggen
    McMahan, Christopher S.
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2247 - 2287
  • [6] Estimation in generalized linear models for functional data via penalized likelihood
    Cardot, H
    Sarda, P
    JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 92 (01) : 24 - 41
  • [7] Penalized estimation for proportional hazards models with current status data
    Lu, Minggen
    Li, Chin-Shang
    STATISTICS IN MEDICINE, 2017, 36 (30) : 4893 - 4907
  • [8] Penalized Logistic Regression With HMM Log-Likelihood Regressors for Speech Recognition
    Birkenes, Oystein
    Matsui, Tomoko
    Tanabe, Kunio
    Siniscalchi, Sabato Marco
    Myrvoll, Tor Andre
    Johnsen, Magne Hallstein
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (06): : 1440 - 1454
  • [9] DENSITY ESTIMATION BY DUAL ASCENT OF THE LOG-LIKELIHOOD
    Tabak, Esteban G.
    Vanden-Eijnden, Eric
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (01) : 217 - 233
  • [10] Smoothing the Lee-Carter and Poisson log-bilinear models for mortality forecasting: a penalized log-likelihood approach
    Delwarde, Antoine
    Denuit, Michel
    Eilers, Paul
    STATISTICAL MODELLING, 2007, 7 (01) : 29 - 48