Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study

被引:40
作者
Du, Jun-Ping [1 ,2 ]
Wang, Yun-Jiang [3 ,4 ]
Lo, Yu-Chieh [5 ]
Wan, Liang [2 ,6 ]
Ogata, Shigenobu [1 ,2 ]
机构
[1] Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat ESISM, Sakyo Ku, Kyoto 6068501, Japan
[2] Osaka Univ, Dept Mech Sci & Bioengn, Osaka 5608531, Japan
[3] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 101408, Peoples R China
[5] Natl Chiao Tung Univ, Dept Mat Sci & Engn, 1001 Univ Rd, Hsinchu 300, Taiwan
[6] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
STRAIN-RATE SENSITIVITY; NANOCRYSTALLINE METALS; DEFORMATION-MECHANISM; ACTIVATION VOLUME; COPPER; STRENGTH; PLASTICITY; MAXIMUM;
D O I
10.1103/PhysRevB.94.104110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accelerated molecular dynamics reveals a mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries (GBs) in Cu. At stress levels up to similar to 90% of the ideal dislocationnucleation stress, atomic shuffling at the E structural unit in a GB acts as a precursor to dislocation nucleation, and eventually a single dislocation is nucleated. At very high stress levels near the ideal dislocation-nucleation stress, a multiple dislocation is collectively nucleated. In these processes, the activation free energy and activation volume depend strongly on temperature. The strain-rate dependence of the critical nucleation stress is studied and the result shows that the mechanism transition from the shuffling-assisted dislocation-nucleation mechanism to the collective dislocation-nucleationmechanism occurs during the strain rate increasing from 10(-4) s(-1) to 10(10) s(-1).
引用
收藏
页数:8
相关论文
共 43 条
[31]   Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation [J].
Tucker, Garritt J. ;
Tschopp, Mark A. ;
McDowell, David L. .
ACTA MATERIALIA, 2010, 58 (19) :6464-6473
[32]  
Van Swygenhoven H, 2002, SCIENCE, V296, P66
[33]  
Van Swygenhoven H, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.024101
[34]   Deformation in nanocrystalline metals [J].
Van Swygenhoven, Helena ;
Weertman, Julia R. .
MATERIALS TODAY, 2006, 9 (05) :24-31
[35]   Hyperdynamics: Accelerated molecular dynamics of infrequent events [J].
Voter, AF .
PHYSICAL REVIEW LETTERS, 1997, 78 (20) :3908-3911
[36]   Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J].
Wang, Y. M. ;
Hamza, A. V. ;
Ma, E. .
ACTA MATERIALIA, 2006, 54 (10) :2715-2726
[37]   Entropic effect on creep in nanocrystalline metals [J].
Wang, Yun-Jiang ;
Ishii, Akio ;
Ogata, Shigenobu .
ACTA MATERIALIA, 2013, 61 (10) :3866-3871
[38]   Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires [J].
Weinberger, Christopher R. ;
Jennings, Andrew T. ;
Kang, Keonwook ;
Greer, Julia R. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (01) :84-103
[39]   Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation [J].
Yamakov, V ;
Wolf, D ;
Phillpot, SR ;
Mukherjee, AK ;
Gleiter, H .
NATURE MATERIALS, 2004, 3 (01) :43-47
[40]   Multi-excitation entropy: its role in thermodynamics and kinetics [J].
Yelon, A. ;
Movaghar, B. ;
Crandall, R. S. .
REPORTS ON PROGRESS IN PHYSICS, 2006, 69 (04) :1145-1194