Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study

被引:40
作者
Du, Jun-Ping [1 ,2 ]
Wang, Yun-Jiang [3 ,4 ]
Lo, Yu-Chieh [5 ]
Wan, Liang [2 ,6 ]
Ogata, Shigenobu [1 ,2 ]
机构
[1] Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat ESISM, Sakyo Ku, Kyoto 6068501, Japan
[2] Osaka Univ, Dept Mech Sci & Bioengn, Osaka 5608531, Japan
[3] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 101408, Peoples R China
[5] Natl Chiao Tung Univ, Dept Mat Sci & Engn, 1001 Univ Rd, Hsinchu 300, Taiwan
[6] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
STRAIN-RATE SENSITIVITY; NANOCRYSTALLINE METALS; DEFORMATION-MECHANISM; ACTIVATION VOLUME; COPPER; STRENGTH; PLASTICITY; MAXIMUM;
D O I
10.1103/PhysRevB.94.104110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accelerated molecular dynamics reveals a mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries (GBs) in Cu. At stress levels up to similar to 90% of the ideal dislocationnucleation stress, atomic shuffling at the E structural unit in a GB acts as a precursor to dislocation nucleation, and eventually a single dislocation is nucleated. At very high stress levels near the ideal dislocation-nucleation stress, a multiple dislocation is collectively nucleated. In these processes, the activation free energy and activation volume depend strongly on temperature. The strain-rate dependence of the critical nucleation stress is studied and the result shows that the mechanism transition from the shuffling-assisted dislocation-nucleation mechanism to the collective dislocation-nucleationmechanism occurs during the strain rate increasing from 10(-4) s(-1) to 10(10) s(-1).
引用
收藏
页数:8
相关论文
共 43 条
[21]   Entropic effect on the rate of dislocation nucleation [J].
Ryu, Seunghwa ;
Kang, Keonwook ;
Cai, Wei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (13) :5174-5178
[22]   Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper [J].
Sansoz, F ;
Molinari, JF .
SCRIPTA MATERIALIA, 2004, 50 (10) :1283-1288
[23]   A maximum in the strength of nanocrystalline copper [J].
Schiotz, J ;
Jacobsen, KW .
SCIENCE, 2003, 301 (5638) :1357-1359
[24]   Grain boundary-mediated plasticity in nanocrystalline nickel [J].
Shan, ZW ;
Stach, EA ;
Wiezorek, JMK ;
Knapp, JA ;
Follstaedt, DM ;
Mao, SX .
SCIENCE, 2004, 305 (5684) :654-657
[25]   DISLOCATION AND GRAIN-BOUNDARY INTERACTIONS IN METALS [J].
SHEN, Z ;
WAGONER, RH ;
CLARK, WAT .
ACTA METALLURGICA, 1988, 36 (12) :3231-3242
[26]   A nanoscale mechanism of hydrogen embrittlement in metals [J].
Song, Jun ;
Curtin, W. A. .
ACTA MATERIALIA, 2011, 59 (04) :1557-1569
[27]   Tensile strength of ⟨100⟩ and ⟨110⟩ tilt bicrystal copper interfaces [J].
Spearot, Douglas E. ;
Tschopp, Mark A. ;
Jacob, Karl I. ;
McDowell, David L. .
ACTA MATERIALIA, 2007, 55 (02) :705-714
[29]   Structure and free volume of ⟨110⟩ symmetric tilt grain boundaries with the E structural unit [J].
Tschopp, M. A. ;
Tucker, G. J. ;
McDowell, D. L. .
ACTA MATERIALIA, 2007, 55 (11) :3959-3969
[30]  
Tschopp MA, 2008, DISCLOC SOLIDS, V14, P43, DOI 10.1016/S1572-4859(07)00002-2