On Some Properties of Smooth Sums of Ridge Functions

被引:7
|
作者
Kuleshov, A. A. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
WEIGHTED SOBOLEV SPACES; FINITE SUMS; INTERPOLATION;
D O I
10.1134/S0081543816060067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following problem is studied: If a finite sum of ridge functions defined on an open subset of R-n belongs to some smoothness class, can one represent this sum as a sum of ridge functions (with the same set of directions) each of which belongs to the same smoothness class as the whole sum? It is shown that when the sum contains m terms and there are m - 1 linearly independent directions among m linearly dependent ones, such a representation exists.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 50 条
  • [1] A representation problem for smooth sums of ridge functions
    Aliev, Rashid A.
    Ismailov, Vugar E.
    JOURNAL OF APPROXIMATION THEORY, 2020, 257
  • [2] On some properties of finite sums of ridge functions defined on convex subsets of a"e n
    Konyagin, S. V.
    Kuleshov, A. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 293 (01) : 186 - 193
  • [3] Continuous sums of ridge functions on a convex body and the class VMO
    Kuleshov, A. A.
    MATHEMATICAL NOTES, 2017, 102 (5-6) : 799 - 805
  • [4] APPROXIMATION BY SUMS OF RIDGE FUNCTIONS WITH FIXED DIRECTIONS
    Ismailov, V. E.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (06) : 741 - 772
  • [5] Some Problems in the Theory of Ridge Functions
    Konyagin, S., V
    Kuleshov, A. A.
    Maiorov, V. E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 301 (01) : 144 - 169
  • [6] Rational approximation of some limited smooth functions
    Zhan, Qian
    Xu, Shusheng
    OPTIK, 2016, 127 (18): : 7072 - 7076
  • [7] On the Representation by Bivariate Ridge Functions
    Aliev, R. A.
    Asgarova, A. A.
    Ismailov, V. E.
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (05) : 675 - 685
  • [8] Interpolation on lines by ridge functions
    Ismailov, V. E.
    Pinkus, A.
    JOURNAL OF APPROXIMATION THEORY, 2013, 175 : 91 - 113
  • [9] On the representation by sums of algebras of continuous functions
    Asgarova, Aida Kh.
    Ismailov, Vugar E.
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (09) : 949 - 955
  • [10] SOME IDENTITIES INVOLVING RATIONAL SUMS
    Diaz-Barrero, J. L.
    Gibergans-Baguena, J.
    Popescu, P. G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2007, 1 (02) : 397 - 402