Effect of Ag nanoparticle size on triboelectric nanogenerator for mechanical energy harvesting

被引:6
|
作者
Zhang, Ping [1 ]
Li, Peng-Fei [1 ]
Zhang, Hong-Hao [1 ]
Deng, Lu [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
关键词
triboelectric nanogenerators; Ag nanoparticles; particle size; dielectric constant; SENSOR; IMPACTS; FILM;
D O I
10.1088/1361-6528/ac8aa2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Triboelectric nanogenerators (TENG) are generally utilized on the grounds that they can catch low-recurrence mechanical energy from various types of movement and convert it into electricity. It has been proved that the adulteration of conductive particles in the triboelectric layer can improve its output performance, but metal nanomaterials have different properties at different scales. In this paper, the triboelectric layer of TENG is a composite film made of silver nanoparticles (AgNPs) with different particle sizes (20 nm, 50 nm, 200 nm and 500 nm) that were dispersed and mixed with two-component liquid silica gel step by step. The open circuit voltage (Voc) and short circuit current (Isc) of the 20 nm component of the AgNPs-dispersed/two-component liquid silica gel TENG(At-TENG) are 102.8 V and 4.42 mu A, which are higher than the result execution of the other components. Smaller size nanoparticles have more number of nanoparticles when the mass fraction is the same. AgNPs form micro-capacitance structures in the insulating polymer layer and enhance the dielectric properties of the composite films through an interfacial polarization mechanism. At-TENG can light up 53 commercial LEDs and power calculators or wristband electronic watches, proving its utility as a self-powered power source. An extensive experiment proves the advantage of small size using comparison and theoretical analysis and provides suggestions for the selection of TENG dopants.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Wearable Woven Triboelectric Nanogenerator Utilizing Electrospun PVDF Nanofibers for Mechanical Energy Harvesting
    Shaikh, Muhammad Omar
    Huang, Yu-Bin
    Wang, Cheng-Chien
    Chuang, Cheng-Hsin
    MICROMACHINES, 2019, 10 (07)
  • [42] Impact of photovoltaic effect on performance enhancement of triboelectric nanogenerator for energy harvesting applications
    Kumar, Shailendra
    Jha, Rajesh Kumar
    Chitnis, Ujjwal
    Singh, Shalini
    Anand, Jay Krishna
    Roy, Swapan Kumar
    Goswami, Ankur
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2023, 41 (03):
  • [43] Waste-to-energy: Utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting
    Rani, Gokana Mohana
    Wu, Chang-Mou
    Motora, Kebena Gebeyehu
    Umapathi, Reddicherla
    JOURNAL OF CLEANER PRODUCTION, 2022, 363
  • [44] Water electrification based triboelectric nanogenerator integrated harmonic oscillator for waste mechanical energy harvesting
    Chau-Duy Le
    Cong-Phat Vo
    Duy-Linh Vu
    Thanh-Ha Nguyen
    Kyoung Kwan Ahn
    ENERGY CONVERSION AND MANAGEMENT, 2022, 251
  • [45] Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring
    Li, Changzheng
    Liu, Xuyang
    Yang, Dafeng
    Liu, Zheng
    NANO ENERGY, 2022, 95
  • [46] A Novel Arch-Shape Nanogenerator Based on Piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting
    Xue, Chenyang
    Li, Junyang
    Zhang, Qiang
    Zhang, Zhibo
    Hai, Zhenyin
    Gao, Libo
    Feng, Ruiting
    Tang, Jun
    Liu, Jun
    Zhang, Wendong
    Sun, Dong
    NANOMATERIALS, 2015, 5 (01): : 36 - 46
  • [47] 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting
    Li, Hui
    Li, Ruihuan
    Fang, Xiaoting
    Jiang, Hongwei
    Ding, Xinrui
    Tang, Biao
    Zhou, Guofu
    Zhou, Rui
    Tang, Yong
    NANO ENERGY, 2019, 58 : 447 - 454
  • [48] Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting
    Chen, Chaoyu
    Guo, Hengyu
    Chen, Lijun
    Wang, Yi-Cheng
    Pu, Xianjie
    Yu, Weidong
    Wang, Fumei
    Du, Zhaoqun
    Wang, Zhong Lin
    ACS NANO, 2020, 14 (04) : 4585 - 4594
  • [49] SOME ADVANCES IN ENERGY HARVESTING TECHNOLOGY OF NONLINEAR TRIBOELECTRIC NANOGENERATOR
    Tan, Dongguo
    Chi, Shimin
    Ou, Xu
    Zhou, Jiaxi
    Wang, Kai
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2024, 56 (09): : 2495 - 2510
  • [50] Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
    Wang, Yuqi
    Yu, Xin
    Yin, Mengfei
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Cheng, Tinghai
    Wang, Zhong Lin
    NANO ENERGY, 2021, 82