Effect of Ag nanoparticle size on triboelectric nanogenerator for mechanical energy harvesting

被引:6
|
作者
Zhang, Ping [1 ]
Li, Peng-Fei [1 ]
Zhang, Hong-Hao [1 ]
Deng, Lu [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
关键词
triboelectric nanogenerators; Ag nanoparticles; particle size; dielectric constant; SENSOR; IMPACTS; FILM;
D O I
10.1088/1361-6528/ac8aa2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Triboelectric nanogenerators (TENG) are generally utilized on the grounds that they can catch low-recurrence mechanical energy from various types of movement and convert it into electricity. It has been proved that the adulteration of conductive particles in the triboelectric layer can improve its output performance, but metal nanomaterials have different properties at different scales. In this paper, the triboelectric layer of TENG is a composite film made of silver nanoparticles (AgNPs) with different particle sizes (20 nm, 50 nm, 200 nm and 500 nm) that were dispersed and mixed with two-component liquid silica gel step by step. The open circuit voltage (Voc) and short circuit current (Isc) of the 20 nm component of the AgNPs-dispersed/two-component liquid silica gel TENG(At-TENG) are 102.8 V and 4.42 mu A, which are higher than the result execution of the other components. Smaller size nanoparticles have more number of nanoparticles when the mass fraction is the same. AgNPs form micro-capacitance structures in the insulating polymer layer and enhance the dielectric properties of the composite films through an interfacial polarization mechanism. At-TENG can light up 53 commercial LEDs and power calculators or wristband electronic watches, proving its utility as a self-powered power source. An extensive experiment proves the advantage of small size using comparison and theoretical analysis and provides suggestions for the selection of TENG dopants.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Embroidery Triboelectric Nanogenerator for Energy Harvesting
    Tahir, Hasan Riaz
    Malengier, Benny
    Sujan, Sanaul
    Van Langenhove, Lieva
    SENSORS, 2024, 24 (12)
  • [2] Effect of ZnO nanoparticle size on the output performance of triboelectric nanogenerator
    Yang, Jia
    Wang, Xiucai
    Hu, Naijian
    Chen, Jianwen
    Yu, Xinmei
    Zhu, Wenbo
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (18)
  • [3] Emerging direct current triboelectric nanogenerator for highentropy mechanical energy harvesting
    CHEN Jie
    GUO RuiLong
    GUO HengYu
    Science China(Technological Sciences), 2024, 67 (05) : 1297 - 1316
  • [4] Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy
    Jie, Yang
    Jia, Xueting
    Zou, Jingdian
    Chen, Yandong
    Wang, Ning
    Wang, Zhong Lin
    Cao, Xia
    ADVANCED ENERGY MATERIALS, 2018, 8 (12)
  • [5] Lightweight Triboelectric Nanogenerator for Energy Harvesting and Sensing Tiny Mechanical Motion
    Li, Tao
    Xu, Ying
    Willander, Magnus
    Xing, Fei
    Cao, Xia
    Wang, Ning
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (24) : 4370 - 4376
  • [6] Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy
    Lin, Long
    Wang, Sihong
    Xie, Yannan
    Jing, Qingshen
    Niu, Simiao
    Hu, Youfan
    Wang, Zhong Lin
    NANO LETTERS, 2013, 13 (06) : 2916 - 2923
  • [7] A Stacked FKM/PU Triboelectric Nanogenerator for Discrete Mechanical Energy Harvesting
    Su, Yuxiang
    Liu, Anguo
    Feng, Wuwei
    Gu, Yunqing
    Su, Xiaonan
    Dai, Guanyu
    Shao, Yilei
    Wan, Liping
    Fang, Haohan
    Li, Zhenhua
    ACS OMEGA, 2023, 8 (21): : 18823 - 18829
  • [8] Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy
    Du, Xinyu
    Li, Nianwu
    Liu, Yuebo
    Wang, Jiaona
    Yuan, Zuqing
    Yin, Yingying
    Cao, Ran
    Zhao, Shuyu
    Wang, Bin
    Wang, Zhong Lin
    Li, Congju
    NANO RESEARCH, 2018, 11 (05) : 2862 - 2871
  • [9] A triboelectric nanogenerator based on cosmetic fixing powder for mechanical energy harvesting
    Kequan Xia
    Yue Chi
    Jiangming Fu
    Zhiyuan Zhu
    Hongze Zhang
    Chaolin Du
    Zhiwei Xu
    Microsystems & Nanoengineering, 5
  • [10] Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy
    Xinyu Du
    Nianwu Li
    Yuebo Liu
    Jiaona Wang
    Zuqing Yuan
    Yingying Yin
    Ran Cao
    Shuyu Zhao
    Bin Wang
    Zhong Lin Wang
    Congju Li
    Nano Research, 2018, 11 : 2862 - 2871