Effect of Ag nanoparticle size on triboelectric nanogenerator for mechanical energy harvesting

被引:6
|
作者
Zhang, Ping [1 ]
Li, Peng-Fei [1 ]
Zhang, Hong-Hao [1 ]
Deng, Lu [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
关键词
triboelectric nanogenerators; Ag nanoparticles; particle size; dielectric constant; SENSOR; IMPACTS; FILM;
D O I
10.1088/1361-6528/ac8aa2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Triboelectric nanogenerators (TENG) are generally utilized on the grounds that they can catch low-recurrence mechanical energy from various types of movement and convert it into electricity. It has been proved that the adulteration of conductive particles in the triboelectric layer can improve its output performance, but metal nanomaterials have different properties at different scales. In this paper, the triboelectric layer of TENG is a composite film made of silver nanoparticles (AgNPs) with different particle sizes (20 nm, 50 nm, 200 nm and 500 nm) that were dispersed and mixed with two-component liquid silica gel step by step. The open circuit voltage (Voc) and short circuit current (Isc) of the 20 nm component of the AgNPs-dispersed/two-component liquid silica gel TENG(At-TENG) are 102.8 V and 4.42 mu A, which are higher than the result execution of the other components. Smaller size nanoparticles have more number of nanoparticles when the mass fraction is the same. AgNPs form micro-capacitance structures in the insulating polymer layer and enhance the dielectric properties of the composite films through an interfacial polarization mechanism. At-TENG can light up 53 commercial LEDs and power calculators or wristband electronic watches, proving its utility as a self-powered power source. An extensive experiment proves the advantage of small size using comparison and theoretical analysis and provides suggestions for the selection of TENG dopants.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mechanical Regulation Triboelectric Nanogenerator with Controllable Output Performance for Random Energy Harvesting
    Yin Mengfei
    Lu Xiaohui
    Qiao Guangda
    Xu Yuhong
    Wang Yuqi
    Cheng Tinghai
    Wang Zhong Lin
    ADVANCED ENERGY MATERIALS, 2020, 10 (22)
  • [2] Effect of ZnO nanoparticle size on the output performance of triboelectric nanogenerator
    Yang, Jia
    Wang, Xiucai
    Hu, Naijian
    Chen, Jianwen
    Yu, Xinmei
    Zhu, Wenbo
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (18)
  • [3] Lightweight Triboelectric Nanogenerator for Energy Harvesting and Sensing Tiny Mechanical Motion
    Li, Tao
    Xu, Ying
    Willander, Magnus
    Xing, Fei
    Cao, Xia
    Wang, Ning
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (24) : 4370 - 4376
  • [4] Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy
    Jie, Yang
    Jia, Xueting
    Zou, Jingdian
    Chen, Yandong
    Wang, Ning
    Wang, Zhong Lin
    Cao, Xia
    ADVANCED ENERGY MATERIALS, 2018, 8 (12)
  • [5] Ag Nanoparticle-Incorporated Natural Rubber for Mechanical Energy Harvesting Application
    Suphasorn, Pawanrat
    Appamato, Intuorn
    Harnchana, Viyada
    Thongbai, Prasit
    Chanthad, Chalathorn
    Siriwong, Chomsri
    Amornkitbamrung, Vittaya
    MOLECULES, 2021, 26 (09):
  • [6] Gridding Triboelectric Nanogenerator for Raindrop Energy Harvesting
    Cheng, Bolang
    Niu, Shaoshuai
    Xu, Qi
    Wen, Juan
    Bai, Suo
    Qin, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (50) : 59975 - 59982
  • [7] Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy
    Cao, Ran
    Zhou, Tao
    Wang, Bin
    Yin, Yingying
    Yuan, Zuqing
    Li, Congju
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (08) : 8370 - 8378
  • [8] Biowaste Sea Shells-Based Triboelectric Nanogenerator: Sustainable Approach for Efficient Mechanical Energy Harvesting
    Vikram, Lakshmi Suneetha
    Potu, Supraja
    Kasireddi, A. K. Durga Prasad
    Khanapuram, Uday Kumar
    Divi, Haranath
    Rajaboina, Rakesh Kumar
    ENERGY TECHNOLOGY, 2024,
  • [9] Emerging direct current triboelectric nanogenerator for high-entropy mechanical energy harvesting
    Chen, Jie
    Guo, Ruilong
    Guo, Hengyu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (05) : 1297 - 1316
  • [10] A wearable flexible triboelectric nanogenerator for bio-mechanical energy harvesting and badminton monitoring
    Wu, Min
    Li, Zheng
    HELIYON, 2024, 10 (10)