A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS WITH APPLICATIONS TO EXACT ALGORITHMS

被引:14
|
作者
Kneis, Joachim [1 ]
Moelle, Daniel [1 ]
Richter, Stefan [1 ]
Rossmanith, Peter [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Comp Sci, D-52056 Aachen, Germany
关键词
graph algorithms; graph theory; algorithms; MAX-2-SAT;
D O I
10.1137/080715482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a bound of m/5.769 vertical bar O(log n) on the pathwidth of graphs with m edges. Respective path decompositions can be computed in polynomial time. Using a well-known framework for algorithms that rely on tree decompositions, this directly leads to runtime bounds of O*(2(m/5.769)) for Max-2SAT and Max-Cut. Both algorithms require exponential space due to dynamic programming. If we agree to accept a slightly larger bound of m/5.217 + 3, we even obtain path decompositions with a rather simple structure: all bags share a large set of common nodes. Using branching based algorithms, this allows us to solve the same problems in polynomial space and time O*(2(m/5.217)).
引用
收藏
页码:407 / 427
页数:21
相关论文
共 50 条
  • [31] SPARSE GRAPHS OF HIGH GONALITY
    Hendrey, Kevin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 1400 - 1407
  • [32] Dismantling sparse random graphs
    Department of Mathematics, Uppsala University, PO Box 480, SE-75.1 06 Uppsala, Sweden
    不详
    Comb. Probab. Comput., 2008, 2 (259-264):
  • [33] Sparse Graphs and an Augmentation Problem
    Kiraly, Csaba
    Mihalyko, Andras
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 238 - 251
  • [34] EFFICIENT ALGORITHMS UNDER DYNAMIC GRAPHS TO SOLVE THE CAPACITATED ARC ROUTING PROBLEM WITH FEASIBLE SPARSE GRAPH
    Tfaili, Sara
    Dkhil, Hamdi
    Sbihi, Abdelkader
    Yassine, Adnan
    RAIRO-OPERATIONS RESEARCH, 2019, 53 (01) : 303 - 322
  • [35] EXACT SPARSE NONNEGATIVE LEAST SQUARES
    Nadisic, Nicolas
    Vandaele, Arnaud
    Gillis, Nicolas
    Cohen, Jeremy E.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5395 - 5399
  • [36] Iterative compression and exact algorithms
    Fomin, Fedor V.
    Gaspers, Serge
    Kratsch, Dieter
    Liedloff, Mathieu
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (7-9) : 1045 - 1053
  • [37] Treewidth, pathwidth and cospan decompositions with applications to graph-accepting tree automata
    Blume, Christoph
    Bruggink, H. J. Sander
    Friedrich, Martin
    Koenig, Barbara
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2013, 24 (03): : 192 - 206
  • [38] A note on coloring sparse random graphs
    Sommer, Christian
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3381 - 3384
  • [39] SPARSE GRAPHS ARE NEAR-BIPARTITE
    Cranston, Daniel W.
    Yancey, Matthew P.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1725 - 1768
  • [40] Adjacency queries in dynamic sparse graphs
    Kowalik, Lukasz
    INFORMATION PROCESSING LETTERS, 2007, 102 (05) : 191 - 195