A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS WITH APPLICATIONS TO EXACT ALGORITHMS

被引:14
|
作者
Kneis, Joachim [1 ]
Moelle, Daniel [1 ]
Richter, Stefan [1 ]
Rossmanith, Peter [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Comp Sci, D-52056 Aachen, Germany
关键词
graph algorithms; graph theory; algorithms; MAX-2-SAT;
D O I
10.1137/080715482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a bound of m/5.769 vertical bar O(log n) on the pathwidth of graphs with m edges. Respective path decompositions can be computed in polynomial time. Using a well-known framework for algorithms that rely on tree decompositions, this directly leads to runtime bounds of O*(2(m/5.769)) for Max-2SAT and Max-Cut. Both algorithms require exponential space due to dynamic programming. If we agree to accept a slightly larger bound of m/5.217 + 3, we even obtain path decompositions with a rather simple structure: all bags share a large set of common nodes. Using branching based algorithms, this allows us to solve the same problems in polynomial space and time O*(2(m/5.217)).
引用
收藏
页码:407 / 427
页数:21
相关论文
共 50 条
  • [1] Pathwidth of cubic graphs and exact algorithms
    Fomin, FV
    Hoie, K
    INFORMATION PROCESSING LETTERS, 2006, 97 (05) : 191 - 196
  • [2] Exact Algorithms for Maximum Weighted Independent Set on Sparse Graphs (Extended Abstract)
    Huang, Sen
    Xiao, Mingyu
    Chen, Xiaoyu
    COMPUTING AND COMBINATORICS (COCOON 2021), 2021, 13025 : 617 - 628
  • [3] Approximating the pathwidth of outerplanar graphs
    Govindan, R
    Langston, MA
    Yan, XD
    INFORMATION PROCESSING LETTERS, 1998, 68 (01) : 17 - 23
  • [4] TREEWIDTH AND PATHWIDTH OF PERMUTATION GRAPHS
    BODLAENDER, HL
    KLOKS, T
    KRATSCH, D
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (04) : 606 - 616
  • [5] Exact Algorithms for Intervalizing Coloured Graphs
    Hans L. Bodlaender
    Johan M. M. van Rooij
    Theory of Computing Systems, 2016, 58 : 273 - 286
  • [6] Exact Algorithms for Intervalizing Coloured Graphs
    Bodlaender, Hans L.
    van Rooij, Johan M. M.
    THEORY OF COMPUTING SYSTEMS, 2016, 58 (02) : 273 - 286
  • [7] Crossing Number for Graphs with Bounded Pathwidth
    Biedl, Therese
    Chimani, Markus
    Derka, Martin
    Mutzel, Petra
    ALGORITHMICA, 2020, 82 (02) : 355 - 384
  • [8] Approximating Pathwidth for Graphs of Small Treewidth
    Groenland, Carla
    Joret, Gwenael
    Nadara, Wojciech
    Walczak, Bartosz
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [9] Crossing Number for Graphs with Bounded Pathwidth
    Therese Biedl
    Markus Chimani
    Martin Derka
    Petra Mutzel
    Algorithmica, 2020, 82 : 355 - 384
  • [10] The Bounded Pathwidth of Control-Flow Graphs
    Conrado, Giovanna Kobus
    Goharshady, Amir Kafshdar
    Lam, Chun Kit
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (OOPSLA):