Global stability of a delayed HIV infection model with nonlinear incidence rate

被引:20
作者
Yuan, Zhaohui [1 ]
Ma, Zhongjun [2 ]
Tang, Xianhua [3 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[3] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear incidence rate; Delay; Stability; HIV; CTL; DIFFERENTIAL-EQUATION MODELS; DYNAMICS IN-VIVO; INTRACELLULAR DELAY; IMMUNE-RESPONSE; VIRUS DYNAMICS; CLEARANCE RATE; DRUG-THERAPY; TIME;
D O I
10.1007/s11071-011-0219-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Under the assumption that the incidence rate of the infection and the removal rate of the infective by cytotoxic T lymphocytes are nonlinear, we study the global dynamics of a HIV infection model with the response of the immune system using characteristic equation, the Fluctuation lemma, and the direct Lyapunov method. The existence of a threshold parameter, i.e., the basic reproduction number or basic reproductive ratio is established and the global stability of the equilibria is discussed.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 1996, Not AMS, DOI DOI 10.1006/TPBI.1998.1382
[2]  
[Anonymous], 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[3]   Virus dynamics and drug therapy [J].
Bonhoeffer, S ;
May, RM ;
Shaw, GM ;
Nowak, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (13) :6971-6976
[4]   Human immunodeficiency virus drug therapy and virus load [J].
Bonhoeffer, S ;
Coffin, JM ;
Nowak, MA .
JOURNAL OF VIROLOGY, 1997, 71 (04) :3275-3278
[5]   Analysis of an HIV/AIDS treatment model with a nonlinear incidence [J].
Cai, Liming ;
Wu, Jingang .
CHAOS SOLITONS & FRACTALS, 2009, 41 (01) :175-182
[6]   HIV-1 infection and low steady state viral loads [J].
Callaway, DS ;
Perelson, AS .
BULLETIN OF MATHEMATICAL BIOLOGY, 2002, 64 (01) :29-64
[7]   Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models [J].
Ciupe, MS ;
Bivort, BL ;
Bortz, DM ;
Nelson, PW .
MATHEMATICAL BIOSCIENCES, 2006, 200 (01) :1-27
[8]   A delay-differential equation model of HIV infection of CD4+ T-cells [J].
Culshaw, RV ;
Ruan, SG .
MATHEMATICAL BIOSCIENCES, 2000, 165 (01) :27-39
[9]   Global stability for a virus dynamics model with nonlinear incidence of infection and removal [J].
Georgescu, Paul ;
Hsieh, Ying-Hen .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 67 (02) :337-353
[10]   Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay [J].
Herz, AVM ;
Bonhoeffer, S ;
Anderson, RM ;
May, RM ;
Nowak, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) :7247-7251