The non-Gaussian dynamics of glycerol

被引:15
作者
Busselez, R. [1 ]
Lefort, R. [1 ]
Ghoufi, A. [1 ]
Beuneu, B. [2 ]
Frick, B. [3 ]
Affouard, F. [4 ]
Morineau, D. [1 ]
机构
[1] Univ Rennes 1, Inst Phys Rennes, CNRS, UMR 6251, F-35042 Rennes, France
[2] CEA Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France
[3] Inst Laue Langevin, F-38042 Grenoble, France
[4] Univ Lille 1, CNRS, Unite Mat & Transformat, UMR 8207, F-59655 Villeneuve Dascq, France
关键词
TAGGED-PARTICLE MOTION; GLASS-FORMING LIQUID; MOLECULAR-DYNAMICS; MICROSCOPIC DYNAMICS; NEUTRON-SCATTERING; SUPERCOOLED LIQUIDS; SELF-DIFFUSION; SYSTEMS; SIMULATIONS; POLYMERS;
D O I
10.1088/0953-8984/23/50/505102
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have combined incoherent quasielastic neutron scattering experiments and atomistic molecular simulations to investigate the microscopic dynamics of glycerol moving away from the hydrodynamic limit. We relate changes in the momentum transfer (Q) dependence of the relaxation time to distinct changes of the single-particle dynamics. Going from small to large values of Q, a first crossover at about 0 : 5 angstrom(-1) is related to the coupling of the translational diffusion dynamics to the non-Debye structural relaxation, while the second crossover at a Q-value near the main diffraction peak is associated with the Gaussian to non-Gaussian crossover of the short-time molecular dynamics, related to the decaging processes. We offer an unprecedented extension of previous studies on polymeric systems towards the case of the typical low-molecular-weight glass-forming system glycerol.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Gaussian and Non-Gaussian Information Based Hydraulic Component Internal Leakage Fault Diagnosis
    Qiu, Zhiwei
    Li, Wanli
    Wang, Daozhi
    Fan, Siwen
    Wang, Qiuping
    2023 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND ARTIFICIAL INTELLIGENCE, RAAI 2023, 2023, : 75 - 81
  • [32] Cyclostationary gaussian and non-gaussian linearization on analyzing double-well nonlinear oscillators
    Chang, R. J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 142 (142)
  • [33] Comparative study on monitoring schemes for non-Gaussian distributed processes
    Li, Gang
    Qin, S. Joe
    JOURNAL OF PROCESS CONTROL, 2018, 67 : 69 - 82
  • [34] Non-Gaussian bosonic channels in the Tavis-Cummings model
    Shishir, Dasika
    Ivan, J. Solomon
    QUANTUM INFORMATION PROCESSING, 2019, 18 (10)
  • [35] The RWST, a comprehensive statistical description of the non-Gaussian structures in the ISM
    Allys, E.
    Levrier, F.
    Zhang, S.
    Colling, C.
    Regaldo-Saint Blancard, B.
    Boulanger, F.
    Hennebelle, P.
    Mallat, S.
    ASTRONOMY & ASTROPHYSICS, 2019, 629
  • [36] Anisotropic and Non-Gaussian Diffusion of Thin Nanorods in Polymer Networks
    Chen, Yulong
    Xiang, Zhijun
    Ren, Haozhe
    Guo, Fengqin
    Ganesan, Venkat
    Liu, Jun
    MACROMOLECULES, 2024, 57 (10) : 5105 - 5118
  • [37] Practical Framework for Conditional Non-Gaussian Quantum State Preparation
    Walschaers, Mattia
    Parigi, Valentina
    Treps, Nicolas
    PRX QUANTUM, 2020, 1 (02):
  • [38] Non-Gaussian entanglement of magnetically coupled modes: A dynamical analysis
    Hab-arrih, Radouan
    Jellal, Ahmed
    Merdaci, Abdeldjalil
    MODERN PHYSICS LETTERS A, 2022, 37 (32)
  • [39] LQ non-Gaussian Control with I/O packet losses
    Battilotti, Stefano
    Cacace, Filippo
    d'Angelo, Massimiliano
    Germani, Alfredo
    Sinopoli, Bruno
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 2802 - 2807
  • [40] Brownian non-Gaussian diffusion of self-avoiding walks
    Marcone, Boris
    Nampoothiri, Sankaran
    Orlandini, Enzo
    Seno, Flavio
    Baldovin, Fulvio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (35)