A spectral multiplier theorem for a sublaplacian on SU(2)

被引:63
作者
Cowling, M [1 ]
Sikora, A
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Australian Natl Univ, Sch Math Sci, Ctr Math & Applicat, Canberra, ACT 0200, Australia
关键词
D O I
10.1007/PL00004894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Hormander-type spectral multiplier theorem for a sublaplacian on SU(2), with critical index determined by the Euclidean dimension of the group. This result is the analogue for SU(2) of the result for the Heisenberg group obtained by D. Muller and E.M. Stein and by W. Hebisch.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 39 条
[1]   ON ASYMPTOTIC BEHAVIOR OF SPECTRAL FUNCTIONS AND RESOLVENT KERNELS OF ELLIPTIC OPERATORS [J].
AGMON, S ;
KANNAI, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1967, 5 (01) :1-&
[2]   SPECTRAL MULTIPLIERS ON LIE-GROUPS OF POLYNOMIAL-GROWTH [J].
ALEXOPOULOS, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :973-979
[3]  
Avakumovic V. G., 1956, MATH Z, V65, P327
[4]   CESARO MEANS AND DEVELOPMENT OF MULTIPLIERS FOR SPHERICAL HARMONICS [J].
BONAMI, A ;
CLERC, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 183 (SEP) :223-263
[5]  
CHEEGER J, 1982, J DIFFER GEOM, V17, P15
[6]   THE WEAK TYPE-L1 CONVERGENCE OF EIGENFUNCTION-EXPANSIONS FOR PSEUDODIFFERENTIAL-OPERATORS [J].
CHRIST, FM ;
SOGGE, CD .
INVENTIONES MATHEMATICAE, 1988, 94 (02) :421-453
[8]  
CLERC JL, 1971, CR ACAD SCI A MATH, V272, P1697
[9]  
CLERC JL, 1972, CR ACAD SCI PARIS A, V275, pA591
[10]  
Coifman RR., 1971, Lect. Notes Math., DOI 10.1007/BFb0058946