A Design Strategy of Carbon Coatings on Silicon Nanoparticles as Anodes of High-Performance Lithium-Ion Batteries

被引:18
作者
Tan, Wen [1 ]
Yang, Fan [2 ]
Lu, Zhouguang [1 ]
Xu, Zhenghe [1 ]
机构
[1] Southern Univ Sci & Technol, Key Univ Lab Highly Efficient Utilizat Solar Energ, Dept Mat Sci & Engn, Shenzhen Key Lab Interfacial Sci & Engn Mat, Shenzhen 518055, Peoples R China
[2] Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
silicon anodes; Si; C composites; carbon coatings; high performance; lithium-ion batteries; CAPACITY; DYNAMICS;
D O I
10.1021/acsaem.2c01655
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon coatings are commonly used to improve the performance of silicon anodes by providing a conductive shell that discourages the formation of excess solid/electrolyte interphase (SEI). Lack of understanding on the links between the properties of carbon components, such as mechanical properties and conductivity, and the electrochemical properties limits the advances in development of high-performance silicon-carbon nanocomposites. Herein, uniform carbon coatings with different degrees of graphitization were formed on the surface of silicon nanoparticles using bitumen as a carbon precursor. Analysis of electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) shows that the carbon coating of higher elasticity and high Li+ diffusion coefficient through the control of carbonizing bitumen coatings on silicon nanoparticles greatly enhanced the electrochemical performance of carbon-coated silicon anodes. The high elasticity provides stable contacts between silicon and carbon coatings and maintains a stable electrode/electrolyte interface (without excessive SEI growth) during long-term cycling. Compared with electronic conductivity, the efficiency of ion diffusion in the carbon coating is found to play an important role in the rate capability of the electrode. This work provides a design strategy to further optimize the performance of the silicon-based anodes.
引用
收藏
页码:12143 / 12150
页数:8
相关论文
共 29 条
[1]   Hard elastic carbon thin films from linking of carbon nanoparticles [J].
Amaratunga, GAJ ;
Chhowalla, M ;
Kiely, CJ ;
Alexandrou, I ;
Aharonov, R ;
Devenish, RM .
NATURE, 1996, 383 (6598) :321-323
[2]   A Micrometer-Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon [J].
Chae, Sujong ;
Xu, Yaobin ;
Yi, Ran ;
Lim, Hyung-Seok ;
Velickovic, Dusan ;
Li, Xiaolin ;
Li, Qiuyan ;
Wang, Chongmin ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2021, 33 (40)
[3]   Robust Pitch on Silicon Nanolayer-Embedded Graphite for Suppressing Undesirable Volume Expansion [J].
Choi, Seong-Hyeon ;
Nam, Gyutae ;
Chae, Sujong ;
Kim, Donghyuk ;
Kim, Namhyung ;
Kim, Won Sik ;
Ma, Jiyoung ;
Sung, Jaekyung ;
Han, Seung Min ;
Ko, Minseong ;
Lee, Hyun-Wook ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2019, 9 (04)
[4]   Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries [J].
Fan, Sijia ;
Wang, Hui ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Yang, Hanxi ;
Ai, Xinping ;
Zhong, Faping .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) :16411-16416
[5]   Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications [J].
Feng, Kun ;
Li, Matthew ;
Liu, Wenwen ;
Kashkooli, Ali Ghorbani ;
Xiao, Xingcheng ;
Cai, Mei ;
Chen, Zhongwei .
SMALL, 2018, 14 (08)
[6]   Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy [J].
Guo, Juchen ;
Sun, Ann ;
Chen, Xilin ;
Wang, Chunsheng ;
Manivannan, Ayyakkannu .
ELECTROCHIMICA ACTA, 2011, 56 (11) :3981-3987
[7]   Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading [J].
He, Yang ;
Jiang, Lin ;
Chen, Tianwu ;
Xu, Yaobin ;
Jia, Haiping ;
Yi, Ran ;
Xue, Dingchuan ;
Song, Miao ;
Genc, Arda ;
Bouchet-Marquis, Cedric ;
Pullan, Lee ;
Tessner, Ted ;
Yoo, Jinkyoung ;
Li, Xiaolin ;
Zhang, Ji-Guang ;
Zhang, Sulin ;
Wang, Chongmin .
NATURE NANOTECHNOLOGY, 2021, 16 (10) :1113-+
[8]   High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries [J].
Hwa, Yoon ;
Kim, Won-Sik ;
Hong, Seong-Hyeon ;
Sohn, Hun-Joon .
ELECTROCHIMICA ACTA, 2012, 71 :201-205
[9]   Continuous-Flow Synthesis of Carbon-Coated Silicon/Iron Silicide Secondary Particles for Li-Ion Batteries [J].
Jo, Changshin ;
Groombridge, Alexander S. ;
De La Verpilliere, Jean ;
Lee, Jung Tae ;
Son, Yeonguk ;
Liang, Hsin-Ling ;
Boies, Adam M. ;
De Volder, Michael .
ACS NANO, 2020, 14 (01) :698-707
[10]  
Ko M, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.113, 10.1038/nenergy.2016.113]