Quantum phase transitions to topological Haldane phases in spin-one chains studied by linked-cluster expansions

被引:2
作者
Adelhardt, P. [1 ]
Gritsch, J. [1 ]
Hille, M. [2 ]
Reiss, D. A. [1 ]
Schmidt, K. P. [1 ]
机构
[1] FAU Erlangen Nurnberg, Inst Theoret Phys, Erlangen, Germany
[2] TU Dortmund, Lehrstuhl Theoret Phys 1, Dortmund, Germany
关键词
ANTIFERROMAGNETIC HEISENBERG-CHAINS; BOND ALTERNATION; COMPUTATION; DIAGRAM; ANYONS; ETA;
D O I
10.1103/PhysRevB.96.235123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use linked-cluster expansions to analyze the quantum phase transitions between symmetry-unbroken trivial and topological Haldane phases in two different spin-one chains. The first model is the spin-one Heisenberg chain in the presence of a single-ion anisotropy, while the second one is the dimerized spin-one Heisenberg chain. For both models, we determine the ground-state energy and the one-particle gap inside the nontopological phase as a high-order series using perturbative continuous unitary transformations. Extrapolations of the gap series are applied to locate the quantum critical point and to extract the associated critical exponent. We find that this approach works unsatisfactorily for the anisotropic chain, since the quality of the extrapolation appears insufficient due to the large correlation length exponent. In contrast, extrapolation schemes display very good convergence for the gap closing in the case of the dimerized spin-one Heisenberg chain.
引用
收藏
页数:6
相关论文
共 47 条
[31]   FINITE-LENGTH CALCULATIONS OF ETA-DIAGRAM AND PHASE-DIAGRAM OF QUANTUM SPIN CHAINS [J].
SCHULZ, HJ ;
ZIMAN, T .
PHYSICAL REVIEW B, 1986, 33 (09) :6545-6548
[32]   Frustrated topological symmetry breaking: Geometrical frustration and anyon condensation [J].
Schulz, Marc D. ;
Burnell, Fiona J. .
PHYSICAL REVIEW B, 2016, 94 (16)
[33]   Ising anyons with a string tension [J].
Schulz, Marc Daniel ;
Dusuel, Sebastien ;
Misguich, Gregoire ;
Schmidt, Kai Phillip ;
Vidal, Julien .
PHYSICAL REVIEW B, 2014, 89 (20)
[34]   Topological Phase Transitions in the Golden String-Net Model [J].
Schulz, Marc Daniel ;
Dusuel, Sebastien ;
Schmidt, Kai Phillip ;
Vidal, Julien .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)
[35]   ORDERING AND CRITICALITY IN SPIN-1 CHAINS [J].
SINGH, RRP ;
GELFAND, MP .
PHYSICAL REVIEW LETTERS, 1988, 61 (18) :2133-2136
[36]   Gaussian phase transition and critical exponents in spin-1 bond-alternative Heisenberg chains [J].
Su, Yao Heng ;
Chen, Ai Min ;
Xiang, Chunhuan ;
Wang, Honglei ;
Xia, Cai-Juan ;
Wang, Jun .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[37]   ISOTROPIC SPIN-1 CHAINS WITH BOND ALTERNATION - ANALYTIC AND NUMERICAL-STUDIES [J].
TOTSUKA, K ;
NISHIYAMA, Y ;
HATANO, N ;
SUZUKI, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (25) :4895-4920
[38]   Breakdown of a topological phase: Quantum phase transition in a loop gas model with tension [J].
Trebst, Simon ;
Werner, Philipp ;
Troyer, Matthias ;
Shtengel, Kirill ;
Nayak, Chetan .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[39]   Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model [J].
Tupitsyn, I. S. ;
Kitaev, A. ;
Prokof'ev, N. V. ;
Stamp, P. C. E. .
PHYSICAL REVIEW B, 2010, 82 (08)
[40]   Scaling properties of fidelity in the spin-1 anisotropic model [J].
Tzeng, Yu-Chin ;
Yang, Min-Fong .
PHYSICAL REVIEW A, 2008, 77 (01)