A Comparative Study on Filtering Protein Secondary Structure Prediction

被引:15
|
作者
Kountouris, Petros [1 ]
Agathocleous, Michalis [1 ]
Promponas, Vasilis J. [2 ]
Christodoulou, Georgia [1 ]
Hadjicostas, Simos [1 ]
Vassiliades, Vassilis [1 ]
Christodoulou, Chris [1 ]
机构
[1] Univ Cyprus, Dept Comp Sci, CY-1678 Nicosia, Cyprus
[2] Univ Cyprus, Dept Biol Sci, CY-1678 Nicosia, Cyprus
关键词
Protein secondary structure prediction; filtering; machine learning; structural bioinformatics; bidirectional recurrent neural networks; MULTIPLE LINEAR-REGRESSION; RECURRENT NEURAL-NETWORKS; DIHEDRAL ANGLES; PSI-BLAST; INFORMATION; ALGORITHM; ACCURACY; MATRICES; DATABASE; SERVER;
D O I
10.1109/TCBB.2012.22
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Filtering of Protein Secondary Structure Prediction (PSSP) aims to provide physicochemically realistic results, while it usually improves the predictive performance. We performed a comparative study on this challenging problem, utilizing both machine learning techniques and empirical rules and we found that combinations of the two lead to the highest improvement.
引用
收藏
页码:731 / 739
页数:9
相关论文
共 50 条
  • [21] Empirical Study of Protein Feature Representation on Deep Belief Networks Trained With Small Data for Secondary Structure Prediction
    Rashid, Shamima
    Sundaram, Suresh
    Kwoh, Chee Keong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 955 - 966
  • [22] Context-Based Features Enhance Protein Secondary Structure Prediction Accuracy
    Yaseen, Ashraf
    Li, Yaohang
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (03) : 992 - 1002
  • [23] Fast learning optimized prediction methodology (FLOPRED) for protein secondary structure prediction
    S. Saraswathi
    J. L. Fernández-Martínez
    A. Kolinski
    R. L. Jernigan
    A. Kloczkowski
    Journal of Molecular Modeling, 2012, 18 : 4275 - 4289
  • [24] Fast learning optimized prediction methodology (FLOPRED) for protein secondary structure prediction
    Saraswathi, S.
    Fernandez-Martinez, J. L.
    Kolinski, A.
    Jernigan, R. L.
    Kloczkowski, A.
    JOURNAL OF MOLECULAR MODELING, 2012, 18 (09) : 4275 - 4289
  • [25] Protein Secondary Structure Prediction Using Support Vector Machines and a Codon Encoding Scheme
    Zamani, Masood
    Kremer, Stefan C.
    2012 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2012,
  • [26] Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses
    Goldman, N
    Thorne, JL
    Jones, DT
    JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (02) : 196 - 208
  • [27] Cascading Discriminant and Generative Models for Protein Secondary Structure Prediction
    Thomarat, Fabienne
    Lauer, Fabien
    Guermeur, Yann
    PATTERN RECOGNITION IN BIOINFORMATICS, 2012, 7632 : 166 - 177
  • [28] JPred4: a protein secondary structure prediction server
    Drozdetskiy, Alexey
    Cole, Christian
    Procter, James
    Barton, Geoffrey J.
    NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) : W389 - W394
  • [29] HYBRID SYSTEM FOR PROTEIN SECONDARY STRUCTURE PREDICTION
    ZHANG, X
    MESIROV, JP
    WALTZ, DL
    JOURNAL OF MOLECULAR BIOLOGY, 1992, 225 (04) : 1049 - 1063
  • [30] Combining Classifiers for Protein Secondary Structure Prediction
    Aydin, Zafer
    Uzut, Ommu Gulsum
    2017 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2017, : 29 - 33