Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs

被引:19
作者
Das, Kinkar Ch [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Graph; Signless Laplacian matrix; The largest signless Laplacian eigenvalue; The smallest signless Laplacian eigenvalue; SPECTRUM;
D O I
10.1016/j.disc.2011.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovic et al. (2007) have given conjectures on signless Laplacian eigenvalues of G (see also Aouchiche and Hansen (2010)[1], Oliveira et al. (2010) [14]). Here we prove two conjectures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:992 / 998
页数:7
相关论文
共 50 条
  • [41] Distribution of Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 508 : 48 - 61
  • [42] Signless Laplacian and normalized Laplacian on the H-join operation of graphs
    Wu, Bao-Feng
    Lou, Yuan-Yuan
    He, Chang-Xiang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)
  • [43] On the signless Laplacian index and radius of graphs
    Liu, Huiqing
    Lu, Mei
    Zhang, Shunzhe
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 327 - 342
  • [44] Graphs with maximum Laplacian and signless Laplacian Estrada index
    Gutman, Ivan
    Medina C, Luis
    Pizarro, Pamela
    Robbiano, Maria
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2664 - 2671
  • [45] On the Laplacian and signless Laplacian polynomials of graphs with semiregular automorphisms
    Arezoomand, Majid
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (01) : 21 - 32
  • [46] The signless Laplacian spectrum of the (edge) corona of two graphs
    Cui, Shu-Yu
    Tian, Gui-Xian
    UTILITAS MATHEMATICA, 2012, 88 : 287 - 297
  • [47] Graphs whose second largest signless Laplacian eigenvalue does not exceed 2+√2
    Lei, Xingyu
    Wang, Jianfeng
    Brunetti, Maurizio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 603 : 242 - 264
  • [48] On the normalized distance laplacian eigenvalues of graphs
    Ganie, Hilal A.
    Rather, Bilal Ahmad
    Das, Kinkar Chandra
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 438
  • [49] Signless Laplacian energy, distance Laplacian energy and distance signless Laplacian spectrum of unitary addition Cayley graphs
    Naveen, Palanivel
    Chithra, A. V.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22) : 7514 - 7535
  • [50] A conjecture on the diameter and signless Laplacian index of graphs
    Liu, Huiqing
    Lu, Mei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 450 : 158 - 174