共 50 条
Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs
被引:19
作者:
Das, Kinkar Ch
[1
]
机构:
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词:
Graph;
Signless Laplacian matrix;
The largest signless Laplacian eigenvalue;
The smallest signless Laplacian eigenvalue;
SPECTRUM;
D O I:
10.1016/j.disc.2011.10.030
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovic et al. (2007) have given conjectures on signless Laplacian eigenvalues of G (see also Aouchiche and Hansen (2010)[1], Oliveira et al. (2010) [14]). Here we prove two conjectures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:992 / 998
页数:7
相关论文
共 50 条