Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs

被引:19
|
作者
Das, Kinkar Ch [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Graph; Signless Laplacian matrix; The largest signless Laplacian eigenvalue; The smallest signless Laplacian eigenvalue; SPECTRUM;
D O I
10.1016/j.disc.2011.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovic et al. (2007) have given conjectures on signless Laplacian eigenvalues of G (see also Aouchiche and Hansen (2010)[1], Oliveira et al. (2010) [14]). Here we prove two conjectures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:992 / 998
页数:7
相关论文
共 50 条
  • [31] A note on graphs whose signless Laplacian has three distinct eigenvalues
    Ayoobi, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (06): : 701 - 706
  • [32] Automated conjectures on upper bounds for the largest Laplacian eigenvalue of graphs
    Brankov, V
    Hansen, P
    Stevanovic, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (2-3) : 407 - 424
  • [33] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    S. Pirzada
    Saleem Khan
    Computational and Applied Mathematics, 2023, 42
  • [34] A complete characterization of bidegreed split graphs with four distinct signless Laplacian eigenvalues
    Song, Guanbang
    Su, Guifu
    Shi, Huichao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 629 : 232 - 245
  • [35] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [36] On the sign patterns of the smallest signless Laplacian eigenvector
    Goldberg, Felix
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 66 - 85
  • [37] TREES WITH FOUR AND FIVE DISTINCT SIGNLESS LAPLACIAN EIGENVALUES
    Taghvaee, F.
    Fath-Tabar, G. H.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (03) : 302 - 313
  • [38] The spectra and the signless Laplacian spectra of graphs with pockets
    Cui, Shu-Yu
    Tian, Gui-Xian
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 363 - 371
  • [39] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Chen, Xiaodan
    Hao, Guoliang
    Jin, Dequan
    Li, Jingjian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 601 - 610
  • [40] Distribution of Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 508 : 48 - 61