Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs

被引:20
作者
Das, Kinkar Ch [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Graph; Signless Laplacian matrix; The largest signless Laplacian eigenvalue; The smallest signless Laplacian eigenvalue; SPECTRUM;
D O I
10.1016/j.disc.2011.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovic et al. (2007) have given conjectures on signless Laplacian eigenvalues of G (see also Aouchiche and Hansen (2010)[1], Oliveira et al. (2010) [14]). Here we prove two conjectures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:992 / 998
页数:7
相关论文
共 18 条
[11]  
Ellingham M.N., 1993, Australas. J. Combin., V8, P247
[12]   Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order [J].
Fan, Yi-Zheng ;
Tam, Bit-Shun ;
Zhou, Jun .
LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (04) :381-397
[13]  
Heuvel JV, 1995, LINEAR ALGEBRA APPL, V226-228, P723
[14]   Bounds on the Q-spread of a graph [J].
Oliveira, Carla Silva ;
de Lima, Leonardo Silva ;
Maia de Abreu, Nair Maria ;
Kirkland, Steve .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2342-2351
[15]   Q-integral graphs with edge-degrees at most five [J].
Simic, Slobodan K. ;
Stanic, Zoran .
DISCRETE MATHEMATICS, 2008, 308 (20) :4625-4634
[16]  
Zhang F., 1999, Matrix Theory: Basic Results and Techniques
[17]   The signless Laplacian spectral radius of graphs with given degree sequences [J].
Zhang, Xiao-Dong .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) :2928-2937
[18]   The lollipop graph is determined by its Q-spectrum [J].
Zhang, Yuanping ;
Liu, Xiaogang ;
Zhang, Bingyan ;
Yong, Xuerong .
DISCRETE MATHEMATICS, 2009, 309 (10) :3364-3369