Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs

被引:20
作者
Das, Kinkar Ch [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Graph; Signless Laplacian matrix; The largest signless Laplacian eigenvalue; The smallest signless Laplacian eigenvalue; SPECTRUM;
D O I
10.1016/j.disc.2011.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovic et al. (2007) have given conjectures on signless Laplacian eigenvalues of G (see also Aouchiche and Hansen (2010)[1], Oliveira et al. (2010) [14]). Here we prove two conjectures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:992 / 998
页数:7
相关论文
共 18 条
[1]   A survey of automated conjectures in spectral graph theory [J].
Aouchiche, M. ;
Hansen, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2293-2322
[2]   A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph [J].
Cardoso, Domingos M. ;
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) :2770-2780
[3]  
Cvetkovic D., 1995, Spectra of Graphs: Theory and Applications
[4]   EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95) :11-27
[5]   Signless Laplacians of finite graphs [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) :155-171
[6]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :19-33
[7]   The Laplacian spectrum of a graph [J].
Das, KC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) :715-724
[8]   Sharp lower bounds on the Laplacian eigenvalues of trees [J].
Das, KC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 :155-169
[9]   Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs [J].
Das, Kinkar Ch. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2420-2424
[10]   On conjectures involving second largest signless Laplacian eigenvalue of graphs [J].
Das, Kinkar Ch. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :3018-3029