This paper presents a novel strategy for the autonomous deployment of Micro Aerial Vehicle scouts through constricted aperture-like ingress points, by narrowly fitting and launching them with a high-precision Mobile Manipulation robot. A significant problem during exploration and reconnaissance into highly unstructured environments, such as indoor collapsed ones, is the encountering of impassable areas due to their constricted and rigid nature. We propose that a heterogeneous robotic system-of-systems armed with manipulation capabilities while also ferrying a fleet of micro-sized aerial agents, can deploy the latter through constricted apertures that marginally fit them in size, thus allowing them to act as scouts and resume the reconnaissance mission. This work's contribution is twofold: first, it proposes active-vision based aperture detection to locate candidate ingress points and a hierarchical search-based aperture profile analysis to position a MAV's body through them, and secondly it presents and experimentally demonstrates the novelty of a system-of-systems approach which leverages mobile manipulation to deploy other robots which are otherwise incapable of entering through extremely narrow openings.