Steady-state and transient behavior in dynamic atomic force microscopy

被引:11
作者
Wagner, Tino [1 ]
机构
[1] Swiss Fed Inst Technol, Nanotechnol Grp, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
关键词
ENERGY-DISSIPATION; IMAGE CALCULATIONS; FREQUENCY-SHIFTS; NC-AFM; TIP; CONTACT; CANTILEVERS; OSCILLATOR; FORMULAS; ACCURATE;
D O I
10.1063/1.5078954
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss the influence of external forces on the motion of the tip in dynamic atomic force microscopy (AFM). First, a compact solution for the steady-state problem is derived employing a Fourier approach. Founding on this solution, we present an analytical framework to describe the transient behavior of the tip after perturbations of tip-sample forces and the excitation signal. The static and transient solutions are then combined to obtain the baseband response of the tip, i.e., the deflection signal demodulated with respect to the excitation. The baseband response generalizes the amplitude and phase response of the tip, and we use it to find explicit formulas describing the amplitude and phase modulation following the influence of external forces on the tip. Finally, we apply our results to obtain an accurate dynamic model of the amplitude controller and phase-locked loop driving the cantilever in a frequency modulated AFM setup. A special emphasis is put on discussing the tip response in environments of high damping, such as ambient or liquid. Published under license by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Modelling and nanoscale force spectroscopy of frequency modulation atomic force microscopy [J].
Payam, Amir Farokh .
APPLIED MATHEMATICAL MODELLING, 2020, 79 (79) :544-554
[32]   Energy dissipation in dynamic force microscopy on KBr(001) correlated with atomic-scale adhesion phenomena [J].
Kawai, Shigeki ;
Glatzel, Thilo ;
Such, Bartosz ;
Koch, Sascha ;
Baratoff, Alexis ;
Meyer, Ernst .
PHYSICAL REVIEW B, 2012, 86 (24)
[33]   Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy [J].
Abooalizadeh, Zahra ;
Sudak, Leszek Josef ;
Egberts, Philip .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2019, 10 :1332-1347
[34]   Opportunities in High-Speed Atomic Force Microscopy [J].
Brown, Benjamin P. ;
Picco, Loren ;
Miles, Mervyn J. ;
Faul, Charl F. J. .
SMALL, 2013, 9 (19) :3201-3211
[35]   Phase imaging atomic force microscopy in the characterization of biomaterials [J].
Ye, Z. ;
Zhao, X. .
JOURNAL OF MICROSCOPY, 2010, 238 (01) :27-35
[36]   Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid [J].
Carrasco, C. ;
Ares, P. ;
de Pablo, P. J. ;
Gomez-Herrero, J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (12)
[37]   Quantifying nanoscale forces using machine learning in dynamic atomic force microscopy [J].
Chandrashekar, Abhilash ;
Belardinelli, Pierpaolo ;
Bessa, Miguel A. ;
Staufer, Urs ;
Alijani, Farbod .
NANOSCALE ADVANCES, 2022, 4 (09) :2134-2143
[38]   Shortcomings of the Derjaguin-Muller-Toporov model in dynamic atomic force microscopy [J].
Theiler, Pius M. ;
Ritz, Christian ;
Stemmer, Andreas .
JOURNAL OF APPLIED PHYSICS, 2021, 130 (24)
[39]   Theoretical simulation of noncontact atomic force microscopy in liquids [J].
Tsukada, M. ;
Watanabe, N. ;
Harada, M. ;
Tagami, K. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (03)
[40]   Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy [J].
Wang, Fei ;
Zhao, Xuezeng .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (04)