Evaluation of integrative clustering methods for the analysis of multi-omics data

被引:55
|
作者
Chauvel, Cecile [1 ]
Novoloaca, Alexei [2 ]
Veyre, Pierre [3 ]
Reynier, Frederic [4 ]
Becker, Jeremie [5 ]
机构
[1] Bioaster, Data Management & Anal Unit, Biostat, Lyon, France
[2] World Hlth Org, Int Agcy Res Canc, Epigenet Grp, Biostat, Lyon, France
[3] Bioaster, Data Management & Anal Unit, Lyon, France
[4] Bioaster, Genom & Transcript, Lyon, France
[5] Bioaster, Genom & Transcript Unit, Biostat, Lyon, France
关键词
benchmark; clustering; data integration; multi-omics; unsupervised analysis; BREAST; JOINT; CLASSIFICATION; EXPRESSION; CRITERIA; MODULES;
D O I
10.1093/bib/bbz015
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in sequencing, mass spectrometry and cytometry technologies have enabled researchers to collect large-scale omics data from the same set of biological samples. The joint analysis of multiple omics offers the opportunity to uncover coordinated cellular processes acting across different omic layers. In this work, we present a thorough comparison of a selection of recent integrative clustering approaches, including Bayesian (BCC and MDI) and matrix factorization approaches (iCluster, moCluster, JIVE and iNMF). Based on simulations, the methods were evaluated on their sensitivity and their ability to recover both the correct number of clusters and the simulated clustering at the common and data-specific levels. Standard non-integrative approaches were also included to quantify the added value of integrative methods. For most matrix factorization methods and one Bayesian approach (BCC), the shared and specific structures were successfully recovered with high and moderate accuracy, respectively. An opposite behavior was observed on non-integrative approaches, i.e. high performances on specific structures only. Finally, we applied the methods on the Cancer Genome Atlas breast cancer data set to check whether results based on experimental data were consistent with those obtained in the simulations.
引用
收藏
页码:541 / 552
页数:12
相关论文
共 50 条
  • [41] A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification
    Chung, Ren-Hua
    Kang, Chen-Yu
    GIGASCIENCE, 2019, 8 (05):
  • [42] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [43] Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer
    Min-Seok Kwon
    Yongkang Kim
    Seungyeoun Lee
    Junghyun Namkung
    Taegyun Yun
    Sung Gon Yi
    Sangjo Han
    Meejoo Kang
    Sun Whe Kim
    Jin-Young Jang
    Taesung Park
    BMC Genomics, 16
  • [44] Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer
    Kwon, Min-Seok
    Kim, Yongkang
    Lee, Seungyeoun
    Namkung, Junghyun
    Yun, Taegyun
    Yi, Sung Gon
    Han, Sangjo
    Kang, Meejoo
    Kim, Sun Whe
    Jang, Jin-Young
    Park, Taesung
    BMC GENOMICS, 2015, 16
  • [45] Integrative Multi-Omics in Biomedical Research
    Hill, Michelle M.
    Gerner, Christopher
    BIOMOLECULES, 2021, 11 (10)
  • [46] Integrative Multi-Omics Through Bioinformatics
    Goh, Hoe-Han
    OMICS APPLICATIONS FOR SYSTEMS BIOLOGY, 2018, 1102 : 69 - 80
  • [47] Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering
    Crippa, Valentina
    Malighetti, Federica
    Villa, Matteo
    Graudenzi, Alex
    Piazza, Rocco
    Mologni, Luca
    Ramazzotti, Daniele
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 162
  • [48] The benefits of smoking cessation on survival in cancer patients by integrative analysis of multi-omics data
    Yang, Sheng
    Liu, Tong
    Liang, Geyu
    MOLECULAR ONCOLOGY, 2020, 14 (09) : 2069 - 2080
  • [49] Integrative Hypergraph Regularization Principal Component Analysis for Sample Clustering and Co-Expression Genes Network Analysis on Multi-Omics Data
    Wu, Ming-Juan
    Gao, Ying-Lian
    Liu, Jin-Xing
    Zheng, Chun-Hou
    Wang, Juan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (06) : 1823 - 1834
  • [50] GLUER: integrative analysis of multi-omics data at single-cell resolution.
    Peng, Tao
    Pourfarhangi, Kamyar Esmaeili
    Tan, Kai
    CANCER RESEARCH, 2020, 80 (21)