Evaluation of integrative clustering methods for the analysis of multi-omics data

被引:55
|
作者
Chauvel, Cecile [1 ]
Novoloaca, Alexei [2 ]
Veyre, Pierre [3 ]
Reynier, Frederic [4 ]
Becker, Jeremie [5 ]
机构
[1] Bioaster, Data Management & Anal Unit, Biostat, Lyon, France
[2] World Hlth Org, Int Agcy Res Canc, Epigenet Grp, Biostat, Lyon, France
[3] Bioaster, Data Management & Anal Unit, Lyon, France
[4] Bioaster, Genom & Transcript, Lyon, France
[5] Bioaster, Genom & Transcript Unit, Biostat, Lyon, France
关键词
benchmark; clustering; data integration; multi-omics; unsupervised analysis; BREAST; JOINT; CLASSIFICATION; EXPRESSION; CRITERIA; MODULES;
D O I
10.1093/bib/bbz015
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in sequencing, mass spectrometry and cytometry technologies have enabled researchers to collect large-scale omics data from the same set of biological samples. The joint analysis of multiple omics offers the opportunity to uncover coordinated cellular processes acting across different omic layers. In this work, we present a thorough comparison of a selection of recent integrative clustering approaches, including Bayesian (BCC and MDI) and matrix factorization approaches (iCluster, moCluster, JIVE and iNMF). Based on simulations, the methods were evaluated on their sensitivity and their ability to recover both the correct number of clusters and the simulated clustering at the common and data-specific levels. Standard non-integrative approaches were also included to quantify the added value of integrative methods. For most matrix factorization methods and one Bayesian approach (BCC), the shared and specific structures were successfully recovered with high and moderate accuracy, respectively. An opposite behavior was observed on non-integrative approaches, i.e. high performances on specific structures only. Finally, we applied the methods on the Cancer Genome Atlas breast cancer data set to check whether results based on experimental data were consistent with those obtained in the simulations.
引用
收藏
页码:541 / 552
页数:12
相关论文
共 50 条
  • [31] Dual alignment feature embedding network for multi-omics data clustering
    Xiao, Yuang
    Yang, Dong
    Li, Jiaxin
    Zou, Xin
    Zhou, Hua
    Tang, Chang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [32] Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data
    Yang, Hai
    Chen, Rui
    Li, Dongdong
    Wang, Zhe
    BIOINFORMATICS, 2021, 37 (16) : 2231 - 2237
  • [33] Computational approaches for network-based integrative multi-omics analysis
    Agamah, Francis E.
    Bayjanov, Jumamurat R.
    Niehues, Anna
    Njoku, Kelechi F.
    Skelton, Michelle
    Mazandu, Gaston K.
    Ederveen, Thomas H. A.
    Mulder, Nicola
    Chimusa, Emile R.
    't Hoen, Peter A. C.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [34] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [35] Comparison and evaluation of integrative methods for the analysis of multilevel omics data: a study based on simulated and experimental cancer data
    Pucher, Bettina M.
    Zeleznik, Oana A.
    Thallinger, Gerhard G.
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (02) : 671 - 681
  • [36] Integrative Multi-Omics Data-Driven approach for Metastasis prediction in Cancer
    Fernandez-Lozano, Carlos
    Linares Blanco, Jose
    Gestal, Marcos
    Dorado, Julian
    Pazos, Alejandro
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE, E-LEARNING AND INFORMATION SYSTEMS 2018 (DATA'18), 2018,
  • [37] Multi-omics integration-a comparison of unsupervised clustering methodologies
    Tini, Giulia
    Marchetti, Luca
    Priami, Corrado
    Scott-Boyer, Marie-Pier
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) : 1269 - 1279
  • [38] Stability of Feature Selection in Multi-Omics Data Analysis
    Lukaszuk, Tomasz
    Krawczuk, Jerzy
    Zyla, Kamil
    Kesik, Jacek
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [39] Integrative Multi-Omics Through Bioinformatics
    Goh, Hoe-Han
    OMICS APPLICATIONS FOR SYSTEMS BIOLOGY, 2018, 1102 : 69 - 80
  • [40] The benefits of smoking cessation on survival in cancer patients by integrative analysis of multi-omics data
    Yang, Sheng
    Liu, Tong
    Liang, Geyu
    MOLECULAR ONCOLOGY, 2020, 14 (09) : 2069 - 2080