Evaluation of integrative clustering methods for the analysis of multi-omics data

被引:55
|
作者
Chauvel, Cecile [1 ]
Novoloaca, Alexei [2 ]
Veyre, Pierre [3 ]
Reynier, Frederic [4 ]
Becker, Jeremie [5 ]
机构
[1] Bioaster, Data Management & Anal Unit, Biostat, Lyon, France
[2] World Hlth Org, Int Agcy Res Canc, Epigenet Grp, Biostat, Lyon, France
[3] Bioaster, Data Management & Anal Unit, Lyon, France
[4] Bioaster, Genom & Transcript, Lyon, France
[5] Bioaster, Genom & Transcript Unit, Biostat, Lyon, France
关键词
benchmark; clustering; data integration; multi-omics; unsupervised analysis; BREAST; JOINT; CLASSIFICATION; EXPRESSION; CRITERIA; MODULES;
D O I
10.1093/bib/bbz015
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in sequencing, mass spectrometry and cytometry technologies have enabled researchers to collect large-scale omics data from the same set of biological samples. The joint analysis of multiple omics offers the opportunity to uncover coordinated cellular processes acting across different omic layers. In this work, we present a thorough comparison of a selection of recent integrative clustering approaches, including Bayesian (BCC and MDI) and matrix factorization approaches (iCluster, moCluster, JIVE and iNMF). Based on simulations, the methods were evaluated on their sensitivity and their ability to recover both the correct number of clusters and the simulated clustering at the common and data-specific levels. Standard non-integrative approaches were also included to quantify the added value of integrative methods. For most matrix factorization methods and one Bayesian approach (BCC), the shared and specific structures were successfully recovered with high and moderate accuracy, respectively. An opposite behavior was observed on non-integrative approaches, i.e. high performances on specific structures only. Finally, we applied the methods on the Cancer Genome Atlas breast cancer data set to check whether results based on experimental data were consistent with those obtained in the simulations.
引用
收藏
页码:541 / 552
页数:12
相关论文
共 50 条
  • [31] Spectral clustering of weighted variables on multi-omics data
    Lee, Yunjung
    Park, Seyoung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2023, 36 (03) : 175 - 196
  • [32] Integrative multi-omics and big data analysis of global nutrition and radiotherapy trends
    Meng, Sibo
    Jiang, Dizhi
    Yang, Guanghui
    Guo, Kaiyue
    Yu, Enhao
    Wang, Yun
    Qu, Linli
    Li, Jiaxin
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2024, 177
  • [33] Integrative analysis of single-cell multi-omics data of the human retina
    Liang, Qingnan
    Cheng, Xuesen
    Owen, Leah
    Shakoor, Akbar
    Vitale, Albert T.
    Husami, Nadine
    Morgan, Denise
    Farkas, Michael H.
    Kim, Ivana K.
    Li, Yumei
    DeAngelis, Margaret M.
    Chen, Rui
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [34] Evaluation and comparison of multi-omics data integration methods for cancer subtyping
    Duan, Ran
    Gao, Lin
    Gao, Yong
    Hu, Yuxuan
    Xu, Han
    Huang, Mingfeng
    Song, Kuo
    Wang, Hongda
    Dong, Yongqiang
    Jiang, Chaoqun
    Zhang, Chenxing
    Jia, Songwei
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (08)
  • [35] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Hagenbeek, Fiona A.
    van Dongen, Jenny
    Pool, Rene
    Roetman, Peter J.
    Harms, Amy C.
    Hottenga, Jouke Jan
    Kluft, Cornelis
    Colins, Olivier F.
    van Beijsterveldt, Catharina E. M.
    Fanos, Vassilios
    Ehli, Erik A.
    Hankemeier, Thomas
    Vermeiren, Robert R. J. M.
    Bartels, Meike
    Dejean, Sebastien
    Boomsma, Dorret, I
    BEHAVIOR GENETICS, 2023, 53 (02) : 101 - 117
  • [36] MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis
    Maes, Alexandre
    Martinez, Xavier
    Druart, Karen
    Laurent, Benoist
    Guegan, Sean
    Marchand, Christophe H.
    Lemaire, Stephane D.
    Baaden, Marc
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2018, 15 (02)
  • [37] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Fiona A. Hagenbeek
    Jenny van Dongen
    René Pool
    Peter J. Roetman
    Amy C. Harms
    Jouke Jan Hottenga
    Cornelis Kluft
    Olivier F. Colins
    Catharina E. M. van Beijsterveldt
    Vassilios Fanos
    Erik A. Ehli
    Thomas Hankemeier
    Robert R. J. M. Vermeiren
    Meike Bartels
    Sébastien Déjean
    Dorret I. Boomsma
    Behavior Genetics, 2023, 53 : 101 - 117
  • [38] Integrative Clustering Analysis for Omics Data with Missingness
    Zhao, Yinqi
    Darst, Burcu
    Conti, David V.
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 806 - 806
  • [39] LUCID: An Integrative Clustering Model for Multi Omics Data
    Zhao, Yinqi
    Conti, David V.
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 550 - 550
  • [40] Integrative multi-omics analysis of intestinal organoid differentiation
    Lindeboom, Rik G. H.
    van Voorthuijsen, Lisa
    Oost, Koen C.
    Rodriguez-Colman, Maria J.
    Luna-Velez, Maria V.
    Furlan, Cristina
    Baraille, Floriane
    Jansen, Pascal W. T. C.
    Ribeiro, Agnes
    Burgering, Boudewijn M. T.
    Snippert, Hugo J.
    Vermeulen, Michiel
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)