Evaluation of integrative clustering methods for the analysis of multi-omics data

被引:55
|
作者
Chauvel, Cecile [1 ]
Novoloaca, Alexei [2 ]
Veyre, Pierre [3 ]
Reynier, Frederic [4 ]
Becker, Jeremie [5 ]
机构
[1] Bioaster, Data Management & Anal Unit, Biostat, Lyon, France
[2] World Hlth Org, Int Agcy Res Canc, Epigenet Grp, Biostat, Lyon, France
[3] Bioaster, Data Management & Anal Unit, Lyon, France
[4] Bioaster, Genom & Transcript, Lyon, France
[5] Bioaster, Genom & Transcript Unit, Biostat, Lyon, France
关键词
benchmark; clustering; data integration; multi-omics; unsupervised analysis; BREAST; JOINT; CLASSIFICATION; EXPRESSION; CRITERIA; MODULES;
D O I
10.1093/bib/bbz015
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in sequencing, mass spectrometry and cytometry technologies have enabled researchers to collect large-scale omics data from the same set of biological samples. The joint analysis of multiple omics offers the opportunity to uncover coordinated cellular processes acting across different omic layers. In this work, we present a thorough comparison of a selection of recent integrative clustering approaches, including Bayesian (BCC and MDI) and matrix factorization approaches (iCluster, moCluster, JIVE and iNMF). Based on simulations, the methods were evaluated on their sensitivity and their ability to recover both the correct number of clusters and the simulated clustering at the common and data-specific levels. Standard non-integrative approaches were also included to quantify the added value of integrative methods. For most matrix factorization methods and one Bayesian approach (BCC), the shared and specific structures were successfully recovered with high and moderate accuracy, respectively. An opposite behavior was observed on non-integrative approaches, i.e. high performances on specific structures only. Finally, we applied the methods on the Cancer Genome Atlas breast cancer data set to check whether results based on experimental data were consistent with those obtained in the simulations.
引用
收藏
页码:541 / 552
页数:12
相关论文
共 50 条
  • [21] Multi-omics Data Integration, Interpretation, and Its Application
    Subramanian, Indhupriya
    Verma, Srikant
    Kumar, Shiva
    Jere, Abhay
    Anamika, Krishanpal
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2020, 14
  • [22] Editorial: Advances in methods and tools for multi-omics data analysis
    Cominetti, Ornella
    Agarwal, Sumeet
    Oller-Moreno, Sergio
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 10
  • [23] Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification
    Wu, Dingming
    Wang, Dongfang
    Zhang, Michael Q.
    Gu, Jin
    BMC GENOMICS, 2015, 16
  • [24] Review of multi-omics data resources and integrative analysis for human brain disorders
    Dong, Xianjun
    Liu, Chunyu
    Dozmorov, Mikhail
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2021, 20 (04) : 223 - 234
  • [25] Tarhana Microbiota-Metabolome Relationships: An Integrative Analysis of Multi-Omics Data
    Dogan, Ozlem Isik
    Yilmaz, Remziye
    FOOD BIOTECHNOLOGY, 2023, 37 (02) : 191 - 217
  • [26] Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks
    Zhang, Ming
    Wang, Xiaoyang
    Yang, Nan
    Zhu, Xu
    Lu, Zequn
    Cai, Yimin
    Li, Bin
    Zhu, Ying
    Li, Xiangpan
    Wei, Yongchang
    Zhang, Shaokai
    Tian, Jianbo
    Miao, Xiaoping
    SCIENCE CHINA-LIFE SCIENCES, 2024, 67 (01) : 132 - 148
  • [27] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Hagenbeek, Fiona A.
    van Dongen, Jenny
    Pool, Rene
    Roetman, Peter J.
    Harms, Amy C.
    Hottenga, Jouke Jan
    Kluft, Cornelis
    Colins, Olivier F.
    van Beijsterveldt, Catharina E. M.
    Fanos, Vassilios
    Ehli, Erik A.
    Hankemeier, Thomas
    Vermeiren, Robert R. J. M.
    Bartels, Meike
    Dejean, Sebastien
    Boomsma, Dorret, I
    BEHAVIOR GENETICS, 2023, 53 (02) : 101 - 117
  • [28] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Fiona A. Hagenbeek
    Jenny van Dongen
    René Pool
    Peter J. Roetman
    Amy C. Harms
    Jouke Jan Hottenga
    Cornelis Kluft
    Olivier F. Colins
    Catharina E. M. van Beijsterveldt
    Vassilios Fanos
    Erik A. Ehli
    Thomas Hankemeier
    Robert R. J. M. Vermeiren
    Meike Bartels
    Sébastien Déjean
    Dorret I. Boomsma
    Behavior Genetics, 2023, 53 : 101 - 117
  • [29] Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer
    Ponzi, Erica
    Thoresen, Magne
    Haugdahl Nost, Therese
    Mollersen, Kajsa
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [30] Comprehensive Evaluation of Multi-Omics Clustering Algorithms for Cancer Molecular Subtyping
    Wang, Juan
    Wang, Lingxiao
    Liu, Yi
    Li, Xiao
    Ma, Jie
    Li, Mansheng
    Zhu, Yunping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)