Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective

被引:95
作者
Hahn, P. Richard [1 ]
Carvalho, Carlos M. [2 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60611 USA
[2] Univ Texas Austin, McCombs Sch Business, Stat, Austin, TX 78712 USA
关键词
Decision theory; Linear regression; Loss function; Model selection; Parsimony; Shrinkage prior; Sparsity; Variable selection; VARIABLE-SELECTION; REGRESSION; LASSO; STRATEGIES; ESTIMATOR; MIXTURES; PRIORS;
D O I
10.1080/01621459.2014.993077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Selecting a subset of variables for linear models remains an active area of research. This article reviews many of the recent contributions to the Bayesian model selection and shrinkage prior literature. A posterior variable selection summary is proposed, which distills a full posterior distribution over regression coefficients into a sequence of sparse linear predictors.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条