Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective

被引:94
作者
Hahn, P. Richard [1 ]
Carvalho, Carlos M. [2 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60611 USA
[2] Univ Texas Austin, McCombs Sch Business, Stat, Austin, TX 78712 USA
关键词
Decision theory; Linear regression; Loss function; Model selection; Parsimony; Shrinkage prior; Sparsity; Variable selection; VARIABLE-SELECTION; REGRESSION; LASSO; STRATEGIES; ESTIMATOR; MIXTURES; PRIORS;
D O I
10.1080/01621459.2014.993077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Selecting a subset of variables for linear models remains an active area of research. This article reviews many of the recent contributions to the Bayesian model selection and shrinkage prior literature. A posterior variable selection summary is proposed, which distills a full posterior distribution over regression coefficients into a sequence of sparse linear predictors.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条
  • [31] FIRST: Combining forward iterative selection and shrinkage in high dimensional sparse linear regression
    Hwang, Wook Yeon
    Zhang, Hao Helen
    Ghosal, Subhashis
    STATISTICS AND ITS INTERFACE, 2009, 2 (03) : 341 - 348
  • [32] Bayesian variable selection for high dimensional generalized linear models: Convergence rates of the fitted densities
    Jiang, Wenxin
    ANNALS OF STATISTICS, 2007, 35 (04) : 1487 - 1511
  • [33] Shrinkage estimation in linear mixed models for longitudinal data
    Hossain, Shakhawat
    Thomson, Trevor
    Ahmed, Ejaz
    METRIKA, 2018, 81 (05) : 569 - 586
  • [34] Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm
    Naveau, Marion
    King, Guillaume Kon Kam
    Rincent, Renaud
    Sansonnet, Laure
    Delattre, Maud
    STATISTICS AND COMPUTING, 2024, 34 (01)
  • [35] Model selection in linear mixed-effect models
    Buscemi, Simona
    Plaia, Antonella
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2020, 104 (04) : 529 - 575
  • [36] Random effects selection in generalized linear mixed models via shrinkage penalty function
    Pan, Jianxin
    Huang, Chao
    STATISTICS AND COMPUTING, 2014, 24 (05) : 725 - 738
  • [37] Bayesian quantile inference and order shrinkage for hysteretic quantile autoregressive models
    Peng, Bo
    Yang, Kai
    Dong, Xiaogang
    Li, Chunjing
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (13) : 2892 - 2915
  • [38] A BAYESIAN SUBSET SPECIFIC APPROACH TO JOINT SELECTION OF MULTIPLE GRAPHICAL MODELS
    Jalali, Peyman
    Khare, Kshitij
    Michailidis, George
    STATISTICA SINICA, 2023, 33 (04) : 2669 - 2692
  • [39] Bayesian structured variable selection in linear regression models
    Wang, Min
    Sun, Xiaoqian
    Lu, Tao
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 205 - 229
  • [40] Bayesian Variable Shrinkage and Selection in Compositional Data Regression: Application to Oral Microbiome
    Datta, Jyotishka
    Bandyopadhyay, Dipankar
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2024, 25 (02) : 491 - 515