共 50 条
Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective
被引:94
作者:
Hahn, P. Richard
[1
]
Carvalho, Carlos M.
[2
]
机构:
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60611 USA
[2] Univ Texas Austin, McCombs Sch Business, Stat, Austin, TX 78712 USA
关键词:
Decision theory;
Linear regression;
Loss function;
Model selection;
Parsimony;
Shrinkage prior;
Sparsity;
Variable selection;
VARIABLE-SELECTION;
REGRESSION;
LASSO;
STRATEGIES;
ESTIMATOR;
MIXTURES;
PRIORS;
D O I:
10.1080/01621459.2014.993077
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Selecting a subset of variables for linear models remains an active area of research. This article reviews many of the recent contributions to the Bayesian model selection and shrinkage prior literature. A posterior variable selection summary is proposed, which distills a full posterior distribution over regression coefficients into a sequence of sparse linear predictors.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条