Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective

被引:94
|
作者
Hahn, P. Richard [1 ]
Carvalho, Carlos M. [2 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60611 USA
[2] Univ Texas Austin, McCombs Sch Business, Stat, Austin, TX 78712 USA
关键词
Decision theory; Linear regression; Loss function; Model selection; Parsimony; Shrinkage prior; Sparsity; Variable selection; VARIABLE-SELECTION; REGRESSION; LASSO; STRATEGIES; ESTIMATOR; MIXTURES; PRIORS;
D O I
10.1080/01621459.2014.993077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Selecting a subset of variables for linear models remains an active area of research. This article reviews many of the recent contributions to the Bayesian model selection and shrinkage prior literature. A posterior variable selection summary is proposed, which distills a full posterior distribution over regression coefficients into a sequence of sparse linear predictors.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条
  • [21] Bayesian projection approaches to variable selection in generalized linear models
    Nott, David J.
    Leng, Chenlei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3227 - 3241
  • [22] Bayesian variable selection in generalized additive partial linear models
    Banerjee, Sayantan
    Ghosal, Subhashis
    STAT, 2014, 3 (01): : 363 - 378
  • [23] A review of Bayesian group selection approaches for linear regression models
    Lai, Wei-Ting
    Chen, Ray-Bing
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (04)
  • [24] An application of Bayesian variable selection to spatial concurrent linear models
    Shang, Zuofeng
    Clayton, Murray K.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2012, 19 (04) : 521 - 544
  • [25] POSTERIOR CONTRACTION IN SPARSE BAYESIAN FACTOR MODELS FOR MASSIVE COVARIANCE MATRICES
    Pati, Debdeep
    Bhattacharya, Anirban
    Pillai, Natesh S.
    Dunson, David
    ANNALS OF STATISTICS, 2014, 42 (03) : 1102 - 1130
  • [26] Bayesian Model Selection in Additive Partial Linear Models Via Locally Adaptive Splines
    Jeong, Seonghyun
    Park, Taeyoung
    van Dyk, David A.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 324 - 336
  • [27] On selection of spatial linear models for lattice data
    Zhu, Jun
    Huang, Hsin-Cheng
    Reyes, Perla E.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 389 - 402
  • [28] Bayesian selection of log-linear models
    Albert, JH
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (03): : 327 - 347
  • [29] Bayesian Variable Selection for Generalized Linear Models Using the Power-Conditional-Expected-Posterior Prior
    Perrakis, Konstantinos
    Fouskakis, Dimitris
    Ntzoufras, Ioannis
    BAYESIAN STATISTICS FROM METHODS TO MODELS AND APPLICATIONS: RESEARCH FROM BAYSM 2014, 2015, 126 : 59 - 73
  • [30] Bayesian variable selection and shrinkage strategies in a complicated modelling setting with missing data: A case study using multistate models
    Beesley, Lauren J.
    Taylor, Jeremy M. G.
    STATISTICAL MODELLING, 2021, 21 (1-2) : 11 - 29