Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective

被引:94
|
作者
Hahn, P. Richard [1 ]
Carvalho, Carlos M. [2 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60611 USA
[2] Univ Texas Austin, McCombs Sch Business, Stat, Austin, TX 78712 USA
关键词
Decision theory; Linear regression; Loss function; Model selection; Parsimony; Shrinkage prior; Sparsity; Variable selection; VARIABLE-SELECTION; REGRESSION; LASSO; STRATEGIES; ESTIMATOR; MIXTURES; PRIORS;
D O I
10.1080/01621459.2014.993077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Selecting a subset of variables for linear models remains an active area of research. This article reviews many of the recent contributions to the Bayesian model selection and shrinkage prior literature. A posterior variable selection summary is proposed, which distills a full posterior distribution over regression coefficients into a sequence of sparse linear predictors.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条
  • [1] Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis
    Bolfarine, Henrique
    Carvalho, Carlos M.
    Lopes, Hedibert F.
    Murray, Jared S.
    BAYESIAN ANALYSIS, 2024, 19 (01): : 181 - 203
  • [2] Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection
    Fahrmeir, Ludwig
    Kneib, Thomas
    Konrath, Susanne
    STATISTICS AND COMPUTING, 2010, 20 (02) : 203 - 219
  • [3] Bayesian variable selection for multioutcome models through shared shrinkage
    Kundu, Debamita
    Mitra, Riten
    Gaskins, Jeremy T.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (01) : 295 - 320
  • [4] A novel Bayesian approach for variable selection in linear regression models
    Posch, Konstantin
    Arbeiter, Maximilian
    Pilz, Juergen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [5] On the sparse Bayesian learning of linear models
    Yee, Chia Chye
    Atchade, Yves F.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7672 - 7691
  • [6] Bayesian Regularization for Graphical Models With Unequal Shrinkage
    Gan, Lingrui
    Narisetty, Naveen N.
    Liang, Feng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) : 1218 - 1231
  • [7] Bayesian variable selection via a benchmark in normal linear models
    Shao, Jun
    Tsui, Kam-Wah
    Zhang, Sheng
    STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (01) : 70 - 81
  • [8] Shrinkage estimation and order selection in threshold autoregressive models via Bayesian empirical likelihood
    Li, Han
    Dong, Xiaogang
    Zhao, Luan
    Ding, Xue
    Yang, Kai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (02) : 361 - 381
  • [9] On Model Selection Consistency of Bayesian Method for Normal Linear Models
    Wang, Shuyun
    Luan, Yihui
    Chang, Qin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (22) : 4021 - 4040
  • [10] Bayesian variable selection and coefficient estimation in heteroscedastic linear regression model
    Alshaybawee, Taha
    Alhamzawi, Rahim
    Midi, Habshah
    Allyas, Intisar Ibrahim
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (14) : 2643 - 2657