ON WEIGHTED COMPLEX RANDERS METRICS

被引:0
作者
Wong, Pit-Mann [1 ]
Zhong, Chunping [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the weighted complex Randers metric F = h + Sigma(m)(i=1)vertical bar B-i vertical bar(1/i) on a complex manifold M, here h is a Hermitian metric on M and B-i, i = 1 , ... ,m are holomorphic symmetric forms of weights i on M, respectively. These metrics are special case of jet metric studied in Chandler Wong [6]. Our main theorem is that the holomorphic sectional curvature hbsc(F) of F is always less or equal to hbsc(h). Using this result we obtain a rigidity result, that is, a compact complex manifold M of complex dimension n with a weighted complex Randers metric F of positive constant holomorphic sectional curvature is isomorphic to P-n.
引用
收藏
页码:589 / 612
页数:24
相关论文
共 50 条
[41]   On Generalized Douglas-Weyl Randers Metrics [J].
Tayebeh Tabatabaeifar ;
Behzad Najafi ;
Mehdi Rafie-Rad .
Czechoslovak Mathematical Journal, 2021, 71 :155-172
[42]   A class of Randers metrics of scalar flag curvature [J].
Cheng, Xinyue ;
Yin, Li ;
Li, Tingting .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (13)
[43]   Flag curvature of invariant Randers metrics on homogeneous manifolds [J].
Esrafilian, E. ;
Moghaddam, H. R. Salimi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13) :3319-3324
[44]   Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds [J].
Kang, Yifang ;
Chen, Zhiqi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 :86-91
[45]   Einstein-Randers metrics on some homogeneous manifolds [J].
Chen, Zhiqi ;
Deng, Shaoqiang ;
Liang, Ke .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 :114-120
[46]   On Randers metrics of isotropic S-curvature II [J].
Yang, Guojun .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (01) :71-87
[47]   The explicit construction of all dually flat Randers metrics [J].
Liu, Huaifu ;
Mo, Xiaohuan .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (07)
[48]   A class of Finsler metrics projectively related to a Randers metric [J].
Chen, Guangzu ;
Cheng, Xinyue .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4) :351-363
[49]   Bi-invariant Randers metrics on Lie groups [J].
Latifi, Dariush .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (1-2) :219-226
[50]   Invariant Einstein-Randers metrics on Stiefel manifolds [J].
Wang, Hui ;
Deng, Shaoqiang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :594-600