ON WEIGHTED COMPLEX RANDERS METRICS

被引:1
作者
Wong, Pit-Mann [1 ]
Zhong, Chunping [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the weighted complex Randers metric F = h + Sigma(m)(i=1)vertical bar B-i vertical bar(1/i) on a complex manifold M, here h is a Hermitian metric on M and B-i, i = 1 , ... ,m are holomorphic symmetric forms of weights i on M, respectively. These metrics are special case of jet metric studied in Chandler Wong [6]. Our main theorem is that the holomorphic sectional curvature hbsc(F) of F is always less or equal to hbsc(h). Using this result we obtain a rigidity result, that is, a compact complex manifold M of complex dimension n with a weighted complex Randers metric F of positive constant holomorphic sectional curvature is isomorphic to P-n.
引用
收藏
页码:589 / 612
页数:24
相关论文
共 50 条
[21]   RANDERS METRICS OF SECTIONAL FLAG CURVATURE [J].
Chen, Bin ;
Zhao, Lili .
HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01) :55-67
[22]   On the Flag Curvature of Invariant Randers Metrics [J].
Hamid Reza Salimi Moghaddam .
Mathematical Physics, Analysis and Geometry, 2008, 11 :1-9
[23]   Randers metrics on CP2 [J].
Vasile Sorin Sabău .
Periodica Mathematica Hungarica, 2004, 48 (1-2) :25-31
[24]   On the flag curvature of invariant randers metrics [J].
Moghaddam, Hamid Reza Salimi .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2008, 11 (01) :1-9
[25]   Some results on strong Randers metrics [J].
Xiaohuan Mo ;
Hongmei Zhu .
Periodica Mathematica Hungarica, 2015, 71 :24-34
[26]   Some results on strong Randers metrics [J].
Mo, Xiaohuan ;
Zhu, Hongmei .
PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (01) :24-34
[27]   On a Complex Randers Space [J].
Sweta Kumari ;
P. N. Pandey .
National Academy Science Letters, 2019, 42 :123-130
[28]   On a Complex Randers Space [J].
Kumari, Sweta ;
Pandey, P. N. .
NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2019, 42 (02) :123-130
[29]   Invariant randers metrics on homogeneous riemannian manifolds [J].
Deng, SQ ;
Hou, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (15) :4353-4360
[30]   Some remarks on Einstein-Randers metrics [J].
Tang, Xiaoyun ;
Yu, Changtao .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 :83-102