Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers

被引:11
作者
Sharma, Anubhav [1 ]
Sankaranarayanan, Ayyadurai [1 ]
机构
[1] Univ Hyderabad Cent Univ, Sch Math & Stat, Prof CR Rao Rd, Hyderabad 500046, India
关键词
Cauchy-Schwarz inequality; Symmetric square L-function; Holomorphic cusp forms; Principal Dirichlet character; FOURIER COEFFICIENTS; EULER PRODUCTS; CLASSIFICATION; ZEROS;
D O I
10.1007/s40993-022-00319-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will be concerned with the average behavior of the nth normalized Fourier coefficients of symmetric square L-function (i.e., L(s, sym(2)f)) over certain sequence of positive integers. Precisely, we prove an asymptotic formula for Sigma(a2+b2+c2+d2 <= x(a,b,c,d)is an element of Z4)lambda(2)(sym2f)(a(2) + b(2) +c(2) + d(2)), where x >= x(0) (sufficiently large), and L(s, sym(2)f) := Sigma(infinity)(n=1)lambda(sym2f)(n)/n(s).
引用
收藏
页数:13
相关论文
共 20 条