Fabrication and characterization of a porous composite scaffold based on gelatin and hydroxyapatite for bone tissue engineering

被引:0
|
作者
Askarzadeh, K [1 ]
Orang, F [1 ]
Moztarzadeh, F [1 ]
机构
[1] Amirkabir Univ Technol, Dept Biomed Engn, Biomat Grp, Tehran, Iran
关键词
bone tissue engineering; gelatin; hydroxyapatite; composite; porosity;
D O I
暂无
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Gelatin is a natural protein derived from the organic constituent of bone (collagen type 1). Therefore its combination with the natural mineral constituent of bone (HA) is supposed to provide closer properties to the natural bone. In this study, porous scaffolds based on gelatin-hydroxyapatite composite were fabricated by solvent casting method. To increase the biocompatibility of the composite, its fabrication was carried out without using any organic solvent and the porosities of these scaffolds were obtained without using any porogen. The fabrication of porous scaffolds with 6 different compositions (0, 10, 20, 30, 40 and 50 wt% of HA in gelatin, respectively), was fallowed by characterizing and determinig their pore size, morphology, and bending modulus. Cell seeding procedure was carried out using mouse fibroblasts to evaluate the scaffolds' biocompatibility. The scaffolds exhibited pore size range from 50 to 200 micrometers with the good interconnectivity. The obtained bending moduli (above 35 GPa) were higher than those of any other biodegradable scaffolds such as SR-PGA and PLLA/HA that have been reported earlier in the literature. The experiments showed that not only the amount of porosity but also the interconnectivity of pores decreases with increasing HA content. It was also demonstrated that the addition of HA would increase the bending modulus. Cell seeding experiments showed appropriate cell attachments for all the samples.
引用
收藏
页码:511 / 520
页数:10
相关论文
共 50 条
  • [21] Electrospun biocompatible Gelatin- Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
    Ahmadi, Samira Arab
    Pezeshki-Modaress, Mohamad
    Irani, Shiva
    Zandi, Mojgan
    INTERNATIONAL JOURNAL OF NANO DIMENSION, 2019, 10 (02) : 169 - 179
  • [22] Preparation, characterization, and bioactivity of reinforced monetite with chitosan-gelatin electrospun composite scaffold for bone tissue engineering
    Singh, Yogendra Pratap
    Purohit, ShivDutt
    Gupta, Mukesh Kumar
    Bhaskar, Rakesh
    Han, Sung Soo
    Dasgupta, Sudip
    BIOMEDICAL MATERIALS, 2023, 18 (05)
  • [23] Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications
    Sathiyavimal, Selvam
    Vasantharaj, Seerangaraj
    LewisOscar, Felix
    Pugazhendhi, Arivalagan
    Subashkumar, Rathinasamy
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 129 : 844 - 852
  • [24] Preparation of Nano-Hydroxyapatite/Polyamide6 composite porous scaffold for bone tissue engineering
    Cheng, Lin
    Li, Yubao
    Zuo, Yi
    Zhou, Gang
    Wang, Huanan
    Wang, Mingbo
    ECO-MATERIALS PROCESSING AND DESIGN VIII, 2007, 544-545 : 793 - +
  • [25] Facile synthesis of hydroxyapatite from bovine bone and gelatin/chitosan-hydroxyapatite scaffold for potential tissue engineering application
    Nguyen Thi Hong Anh
    Tra Phuong Trinh
    Le Van Tan
    Nguyen Thi Mai Tho
    Nguyen Van Cuong
    VIETNAM JOURNAL OF CHEMISTRY, 2022, 60 (02) : 198 - 205
  • [26] Fabrication and characterization of PHEMA–gelatin scaffold enriched with graphene oxide for bone tissue engineering
    Sara Tabatabaee
    Nafiseh Baheiraei
    Mojdeh Salehnia
    Journal of Orthopaedic Surgery and Research, 17
  • [27] Fabrication of Porous Biologic Hydroxyapatite Scaffold Reinforced with Polymer Coating for Bone Tissue Engineering Candidate
    Sabree, Israa K.
    Abd Aladel, Batool
    IRANIAN JOURNAL OF MATERIALS SCIENCE AND ENGINEERING, 2023, 20 (03) : 1 - 10
  • [28] A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering
    Shen, F
    Cui, YL
    Yang, LF
    Yao, KD
    Dong, XH
    Jia, WY
    Shi, HD
    POLYMER INTERNATIONAL, 2000, 49 (12) : 1596 - 1599
  • [29] Preparation and characterization of collagen-hydroxyapatite composite used for bone tissue engineering scaffold
    Liu, LR
    Zhang, LH
    Ren, BZ
    Wang, FJ
    Zhang, QQ
    ARTIFICIAL CELLS BLOOD SUBSTITUTES AND IMMOBILIZATION BIOTECHNOLOGY, 2003, 31 (04): : 435 - 448
  • [30] 3D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility study
    Kara, Aylin
    Distler, Thomas
    Polley, Christian
    Schneidereit, Dominik
    Seitz, Hermann
    Friedrich, Oliver
    Tihminlioglu, Funda
    Boccaccini, Aldo R.
    MATERIALS TODAY BIO, 2022, 15