Robust CUR Decomposition: Theory and Imaging Applications*

被引:26
作者
Cai, HanQin [1 ]
Hamm, Keaton [2 ]
Huang, Longxiu [1 ]
Needell, Deanna [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
CUR decomposition; RPCA; robust CUR; low-rank matrix approximation; interpolative decom-positions; robust algorithms; PSEUDO-SKELETON APPROXIMATIONS; SUBSET-SELECTION; FACE RECOGNITION; MATRICES; ALGORITHMS; PCA;
D O I
10.1137/20M1388322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the use of robust principal component analysis (RPCA) in a CUR decomposition framework and applications thereof. Our main algorithms produce a robust version of columnrow factorizations of matrices D = L + S, where L is low-rank and S contains sparse outliers. These methods yield interpretable factorizations at low computational cost and provide new CUR decompositions that are robust to sparse outliers, in contrast to previous methods. We consider two key imaging applications of RPCA: video foreground-background separation and face modeling. This paper examines the qualitative behavior of our robust CUR decompositions on the benchmark videos and face datasets and finds that our method works as well as standard RPCA while being significantly faster. Additionally, we consider hybrid randomized and deterministic sampling methods which produce a compact CUR decomposition of a given matrix and apply this to video sequences to produce canonical frames thereof.
引用
收藏
页码:1472 / 1503
页数:32
相关论文
共 53 条
  • [1] CUR Decompositions, Similarity Matrices, and Subspace Clustering
    Aldroubi, Akram
    Hamm, Keaton
    Koku, Ahmet Bugra
    Sekmen, Ali
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2019, 4
  • [2] Similarity matrix framework for data from union of subspaces
    Aldroubi, Akram
    Sekmen, Ali
    Koku, Ahmet Bugra
    Cakmak, Ahmet Faruk
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 45 (02) : 425 - 435
  • [3] Altschuler J, 2016, PR MACH LEARN RES, V48
  • [4] [Anonymous], 2014, Advances in Neural Information Processing Systems
  • [5] FASTER SUBSET SELECTION FOR MATRICES AND APPLICATIONS
    Avron, Haim
    Boutsidis, Christos
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) : 1464 - 1499
  • [6] Bartholdi J. J. III, 1982, Operations Research Letters, V1, P190, DOI 10.1016/0167-6377(82)90038-4
  • [7] OPTIMAL CUR MATRIX DECOMPOSITIONS
    Boutsidis, Christos
    Woodruff, David P.
    [J]. SIAM JOURNAL ON COMPUTING, 2017, 46 (02) : 543 - 589
  • [8] NEAR-OPTIMAL COLUMN-BASED MATRIX RECONSTRUCTION
    Boutsidis, Christos
    Drineas, Petros
    Magdon-Ismail, Malik
    [J]. SIAM JOURNAL ON COMPUTING, 2014, 43 (02) : 687 - 717
  • [9] Bouwmans Thierry, 2009, Recent Patents on Computer Science, V2, P223, DOI 10.2174/1874479610902030223
  • [10] On the Applications of Robust PCA in Image and Video Processing
    Bouwmans, Thierry
    Javed, Sajid
    Zhang, Hongyang
    Lin, Zhouchen
    Otazo, Ricardo
    [J]. PROCEEDINGS OF THE IEEE, 2018, 106 (08) : 1427 - 1457