Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification

被引:0
|
作者
Yang Aijun [1 ,2 ]
Jiang Xuejun [3 ]
Liu Pengfei [4 ]
Lin Jinguan [5 ]
机构
[1] Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Econ & Management, Nanjing, Jiangsu, Peoples R China
[3] South Univ Sci & Technol China, Dept Math, Shenzhen, Peoples R China
[4] Univ Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Peoples R China
[5] Nanjing Audit Univ, Inst Stat & Big Data, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Sparse Bayesian method; Multinomial probit model; Correlation prior; High-dimensional data classification; VARIABLE SELECTION; GENE SELECTION; CANCER;
D O I
10.1016/j.spl.2016.08.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Selecting a small number of relevant genes for cancer classification has received a great deal of attention in microarray data analysis. In this paper, a sparse Bayesian multinomial probit regression model with correlation prior is proposed. Based on simulated and real datasets, we demonstrate that the proposed method performs better than five other competing methods in terms of variable selection and classification. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [31] Classification with High-Dimensional Sparse Samples
    Huang, Dayu
    Meyn, Sean
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [32] Multi-class cancer classification using multinomial probit regression with Bayesian gene selection
    Zhou, X
    Wang, X
    Dougherty, ER
    IEE PROCEEDINGS SYSTEMS BIOLOGY, 2006, 153 (02): : 70 - 78
  • [33] Sparse group lasso and high dimensional multinomial classification
    Vincent, Martin
    Hansen, Niels Richard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 771 - 786
  • [34] Multinomial naive Bayesian classifier with generalized Dirichlet priors for high-dimensional imbalanced data
    Wong, Tzu-Tsung
    Tsai, Hsing-Chen
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [35] Online sparse sliced inverse regression for high-dimensional streaming data
    Xu, Jianjun
    Cui, Wenquan
    Cheng, Haoyang
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (02)
  • [36] High-dimensional longitudinal classification with the multinomial fused lasso
    Adhikari, Samrachana
    Lecci, Fabrizio
    Becker, James T.
    Junker, Brian W.
    Kuller, Lewis H.
    Lopez, Oscar L.
    Tibshirani, Ryan J.
    STATISTICS IN MEDICINE, 2019, 38 (12) : 2184 - 2205
  • [37] High-dimensional variable selection in regression and classification with missing data
    Gao, Qi
    Lee, Thomas C. M.
    SIGNAL PROCESSING, 2017, 131 : 1 - 7
  • [38] Classification of High-Dimensional Data with Ensemble of Logistic Regression Models
    Lim, Noha
    Ahn, Hongshik
    Moon, Hojin
    Chen, James J.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2010, 20 (01) : 160 - 171
  • [39] High-Dimensional Sparse Additive Hazards Regression
    Lin, Wei
    Lv, Jinchi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (501) : 247 - 264
  • [40] Sparse Bayesian variable selection in high-dimensional logistic regression models with correlated priors
    Ma, Zhuanzhuan
    Han, Zifei
    Ghosh, Souparno
    Wu, Liucang
    Wang, Min
    STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)