Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification

被引:0
|
作者
Yang Aijun [1 ,2 ]
Jiang Xuejun [3 ]
Liu Pengfei [4 ]
Lin Jinguan [5 ]
机构
[1] Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Econ & Management, Nanjing, Jiangsu, Peoples R China
[3] South Univ Sci & Technol China, Dept Math, Shenzhen, Peoples R China
[4] Univ Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Peoples R China
[5] Nanjing Audit Univ, Inst Stat & Big Data, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Sparse Bayesian method; Multinomial probit model; Correlation prior; High-dimensional data classification; VARIABLE SELECTION; GENE SELECTION; CANCER;
D O I
10.1016/j.spl.2016.08.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Selecting a small number of relevant genes for cancer classification has received a great deal of attention in microarray data analysis. In this paper, a sparse Bayesian multinomial probit regression model with correlation prior is proposed. Based on simulated and real datasets, we demonstrate that the proposed method performs better than five other competing methods in terms of variable selection and classification. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [11] Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis
    Aijun Yang
    Xuejun Jiang
    Lianjie Shu
    Jinguan Lin
    Computational Statistics, 2017, 32 : 127 - 143
  • [12] Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis
    Yang, Aijun
    Jiang, Xuejun
    Shu, Lianjie
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2017, 32 (01) : 127 - 143
  • [13] Concentration of a Sparse Bayesian Model With Horseshoe Prior in Estimating High-Dimensional Precision Matrix
    Mai, The Tien
    STAT, 2024, 13 (04):
  • [14] Adaptive Bayesian density regression for high-dimensional data
    Shen, Weining
    Ghosal, Subhashis
    BERNOULLI, 2016, 22 (01) : 396 - 420
  • [15] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [16] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    Psychometrika, 2016, 81 : 161 - 183
  • [17] SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression
    Sun, Qiang
    Zhu, Hongtu
    Liu, Yufeng
    Ibrahim, Joseph G.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 289 - 302
  • [18] Sparse Bayesian variable selection for classifying high-dimensional data
    Yang, Aijun
    Lian, Heng
    Jiang, Xuejun
    Liu, Pengfei
    STATISTICS AND ITS INTERFACE, 2018, 11 (02) : 385 - 395
  • [19] vbmp: Variational Bayesian multinomial probit regression for multi-class classification in R
    Lama, Nicola
    Girolami, Mark
    BIOINFORMATICS, 2008, 24 (01) : 135 - 136
  • [20] Sparse High-Dimensional Isotonic Regression
    Gamarnik, David
    Gaudio, Julia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32