Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification

被引:0
|
作者
Yang Aijun [1 ,2 ]
Jiang Xuejun [3 ]
Liu Pengfei [4 ]
Lin Jinguan [5 ]
机构
[1] Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Econ & Management, Nanjing, Jiangsu, Peoples R China
[3] South Univ Sci & Technol China, Dept Math, Shenzhen, Peoples R China
[4] Univ Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Peoples R China
[5] Nanjing Audit Univ, Inst Stat & Big Data, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Sparse Bayesian method; Multinomial probit model; Correlation prior; High-dimensional data classification; VARIABLE SELECTION; GENE SELECTION; CANCER;
D O I
10.1016/j.spl.2016.08.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Selecting a small number of relevant genes for cancer classification has received a great deal of attention in microarray data analysis. In this paper, a sparse Bayesian multinomial probit regression model with correlation prior is proposed. Based on simulated and real datasets, we demonstrate that the proposed method performs better than five other competing methods in terms of variable selection and classification. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [1] Sparse bayesian kernel multinomial probit regression model for high-dimensional data classification
    Yang, Aijun
    Jiang, Xuejun
    Shu, Lianjie
    Liu, Pengfei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (01) : 165 - 176
  • [2] Sparse Bayesian variable selection in multinomial probit regression model with application to high-dimensional data classification
    Yang Aijun
    Jiang Xuejun
    Xiang Liming
    Lin Jinguan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (12) : 6137 - 6150
  • [3] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Aijun Yang
    Yunxian Li
    Niansheng Tang
    Jinguan Lin
    Computational Statistics, 2015, 30 : 399 - 418
  • [4] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Yang, Aijun
    Li, Yunxian
    Tang, Niansheng
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 399 - 418
  • [5] Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data
    Aijun Yang
    Yuzhu Tian
    Yunxian Li
    Jinguan Lin
    Computational Statistics, 2020, 35 : 245 - 258
  • [6] Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data
    Yang, Aijun
    Tian, Yuzhu
    Li, Yunxian
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2020, 35 (01) : 245 - 258
  • [7] A sparse multinomial probit model for classification
    Yunfei Ding
    Robert F. Harrison
    Pattern Analysis and Applications, 2011, 14 : 47 - 55
  • [8] A sparse multinomial probit model for classification
    Ding, Yunfei
    Harrison, Robert F.
    PATTERN ANALYSIS AND APPLICATIONS, 2011, 14 (01) : 47 - 55
  • [9] Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
    Yau, P
    Kohn, R
    Wood, S
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (01) : 23 - 54
  • [10] High-Dimensional Classification by Sparse Logistic Regression
    Abramovich, Felix
    Grinshtein, Vadim
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 3068 - 3079