Exploring the Temporal Information From GEO Satellites for Estimating Precipitation With Convolutional Neural Networks

被引:1
作者
Upadhyaya, Shruti A. [1 ]
Kirstetter, Pierre-Emmanuel [2 ,3 ,4 ]
Kuligowski, Robert J. [5 ]
Searls, Maresa [6 ]
机构
[1] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73072 USA
[2] Univ Oklahoma, Adv Radar Res Ctr, Sch Meteorol, Norman, OK 73072 USA
[3] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73072 USA
[4] NOAA, Natl Severe Storms Lab, Norman, OK 73019 USA
[5] NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD 20740 USA
[6] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA
关键词
Clouds; Spatial resolution; Convolutional neural networks; Feature extraction; Training; Convolution; Rain; Classification; convective stratiform classification; convolution neural networks; geostationary satellites; GOES-16; machine learning; quantitative precipitation estimation; satellite precipitation; RAINFALL ESTIMATION; ALGORITHM; CLASSIFICATION; FRAMEWORK;
D O I
10.1109/LGRS.2022.3189535
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Temporal information from a geostationary (GEO) satellite is explored for improved precipitation characterization and quantification. Temporal predictors are extracted from the Geostationary Operational Environmental Satellite (GOES)-16 Advanced Baseline Imager (ABI). A 1-D convolutional neural network (CNN) architecture is proposed and compared to a deep neural network (DNN) benchmark without temporal predictors. While the CNN detection (rain/no-rain separation) is on par with the DNN benchmark, promising results are obtained for both precipitation type classification and quantification, indicating the value of the temporal information for precipitation estimation. The identification of rapidly evolving convective systems is improved (accuracy improved from 49 to 58), while false detections in stratiform-type precipitation are reduced. Rain rate quantification is improved by reducing the overestimation of low rain rates, which increases the correlation from 0.34 (DNN) to 0.41 (CNN). This study is an important first step toward better characterizing and quantifying precipitation using the very high temporal resolution of GEO satellites.
引用
收藏
页数:5
相关论文
共 29 条
  • [1] Ba MB, 2001, J APPL METEOROL, V40, P1500, DOI 10.1175/1520-0450(2001)040<1500:GMRAG>2.0.CO
  • [2] 2
  • [3] BARRETT EC, 1970, MON WEATHER REV, V98, P322, DOI 10.1175/1520-0493(1970)098<0322:TEOMRF>2.3.CO
  • [4] 2
  • [5] Berne A, 2004, J HYDROL, V299, P166, DOI [10.1016/S0022-1694(04)00363-4, 10.1016/j.jhydrol.2004.08.002]
  • [6] Chollet F., 2015, Keras
  • [7] Ebert-Uphoff I., 2021, AGU FALL M
  • [8] Follansbee W. A, 1973, NOAA TECHNICAL MEMOR, V44, P39
  • [9] NEOCOGNITRON - A NEW ALGORITHM FOR PATTERN-RECOGNITION TOLERANT OF DEFORMATIONS AND SHIFTS IN POSITION
    FUKUSHIMA, K
    MIYAKE, S
    [J]. PATTERN RECOGNITION, 1982, 15 (06) : 455 - 469
  • [10] Grasso L., 2020, Electron. J. Sev. Storms Meteor, V15, P1, DOI [10.55599/ejssm.v15i2.76, DOI 10.55599/EJSSM.V15I2.76]