Artificial intelligence in clinical research of cancers

被引:26
作者
Shao, Dan [1 ]
Dai, Yinfei [1 ]
Li, Nianfeng [1 ]
Cao, Xuqing [2 ]
Zhao, Wei [3 ]
Cheng, Li [4 ]
Rong, Zhuqing [5 ]
Huang, Lan [6 ]
Wang, Yan [6 ]
Zhao, Jing [7 ]
机构
[1] Changchun Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
[2] Peoples Hosp Ningxia Hui Autonomous Reg, Dept Neurol, Med, Yinchuan, Ningxia, Peoples R China
[3] Ningxia Med Univ, Dept Biochem & Mol Biol, Yinchuan, Ningxia, Peoples R China
[4] Changchun Univ Tradit Chinese Med, Affiliated Hosp, Dept Elect Diag, Changchun, Peoples R China
[5] Changchun Univ, Sch Sci, Changchun, Peoples R China
[6] Jilin Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
[7] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
基金
中国国家自然科学基金;
关键词
drug discovery; clinical research of cancers; deep learning; artificial intelligence; LUNG-CANCER; DEEP; CLASSIFICATION; PREDICTION; IDENTIFICATION; RECURRENCE; LANDSCAPE;
D O I
10.1093/bib/bbab523
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Several factors, including advances in computational algorithms, the availability of high-performance computing hardware, and the assembly of large community-based databases, have led to the extensive application of Artificial Intelligence (AI) in the biomedical domain for nearly 20 years. AI algorithms have attained expert-level performance in cancer research. However, only a few AI-based applications have been approved for use in the real world. Whether AI will eventually be capable of replacing medical experts has been a hot topic. In this article, we first summarize the cancer research status using AI in the past two decades, including the consensus on the procedure of AI based on an ideal paradigm and current efforts of the expertise and domain knowledge. Next, the available data of AI process in the biomedical domain are surveyed. Then, we review the methods and applications of AI in cancer clinical research categorized by the data types including radiographic imaging, cancer genome, medical records, drug information and biomedical literatures. At last, we discuss challenges in moving AI from theoretical research to real-world cancer research applications and the perspectives toward the future realization of AI participating cancer treatment.
引用
收藏
页数:12
相关论文
共 109 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]   MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data [J].
Albaradei, Somayah ;
Napolitano, Francesco ;
Thafar, Maha A. ;
Gojobori, Takashi ;
Essack, Magbubah ;
Gao, Xin .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :4404-4411
[3]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[4]  
[Anonymous], 2017, HYBRID APPROACH RELA
[5]   Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning [J].
Aubreville, Marc ;
Knipfer, Christian ;
Oetter, Nicolai ;
Jaremenko, Christian ;
Rodner, Erik ;
Denzler, Joachim ;
Bohr, Christopher ;
Neumann, Helmut ;
Stelzle, Florian ;
Maier, Andreas .
SCIENTIFIC REPORTS, 2017, 7
[6]   Machine learning identifies interacting genetic variants contributing to breast cancer risk: A case study in Finnish cases and controls [J].
Behravan, Hamid ;
Hartikainen, Jaana M. ;
Tengstrom, Maria ;
Pylkas, Katri ;
Winqvist, Robert ;
Kosma, Veli-Matti ;
Mannermaa, Arto .
SCIENTIFIC REPORTS, 2018, 8
[7]   Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Durdux, Catherine ;
Taieb, Julien ;
Berger, Anne ;
Coriat, Romain ;
Chaussade, Stanislas ;
Dousset, Bertrand ;
Nordlinger, Bernard ;
Burgun, Anita .
SCIENTIFIC REPORTS, 2018, 8
[8]   A method of gene expression data transfer from cell lines to cancer patients for machine-learning prediction of drug efficiency [J].
Borisov, Nicolas ;
Tkachev, Victor ;
Suntsova, Maria ;
Kovalchuk, Olga ;
Zhavoronkov, Alex ;
Muchnik, Ilya ;
Buzdin, Anton .
CELL CYCLE, 2018, 17 (04) :486-491
[9]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[10]   Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning [J].
Cha, Kenny H. ;
Hadjiiski, Lubomir ;
Chan, Heang-Ping ;
Weizer, Alon Z. ;
Alva, Ajjai ;
Cohan, Richard H. ;
Caoili, Elaine M. ;
Paramagul, Chintana ;
Samala, Ravi K. .
SCIENTIFIC REPORTS, 2017, 7