Well-Posedness of the Dirichlet and Poincar, Problems for the Wave Equation in a Many-Dimensional Domain

被引:0
|
作者
Aldashev, S. A. [1 ]
机构
[1] Aktyubinsk Univ, Aktobe, Kazakhstan
关键词
Integral Equation; Wave Equation; Dirichlet Problem; Hyperbolic Equation; Singular Integral Equation;
D O I
10.1007/s11253-015-1033-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine a many-dimensional domain in which the Dirichlet and Poincar, problems for the wave equation are uniquely solvable.
引用
收藏
页码:1582 / 1588
页数:7
相关论文
共 50 条
  • [31] Global well-posedness for strongly damped viscoelastic wave equation
    Xu, Runzhang
    Yang, Yanbing
    Liu, Yacheng
    APPLICABLE ANALYSIS, 2013, 92 (01) : 138 - 157
  • [32] WELL-POSEDNESS FOR THE REGULARIZED INTERMEDIATE LONG-WAVE EQUATION
    Schoeffel, Janaina
    de Zarate, Ailin Ruiz
    Oquendo, Higidio Portillo
    Alfaro Vigo, Daniel G.
    Niche, Cesar J.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (02) : 523 - 535
  • [33] Well-posedness for a class of wave equation with past history and a delay
    Gongwei Liu
    Hongwei Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [34] Well-posedness of the dirichlet problem in a cylindrical domain for degenerating multidimensional elliptic equations
    Aldashev, S. A.
    MATHEMATICAL NOTES, 2013, 94 (5-6) : 954 - 957
  • [35] Well-posedness results for the wave equation generated by the Bessel operator
    Bekbolat, B.
    Tokmagambetov, N.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 101 (01): : 11 - 16
  • [37] WELL-POSEDNESS OF WAVE EQUATION WITH A VARIABLE COEFFICIENT BY METHOD OF CHARACTERISTICS
    Nakagawa, Nao
    Yagi, Shintaro
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2408 - 2415
  • [38] Low regularity well-posedness for the viscous surface wave equation
    Ren, Xiaoxia
    Xiang, Zhaoyin
    Zhang, Zhifei
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (10) : 1887 - 1924
  • [39] Well-Posedness for Nonlinear Wave Equation with Potentials Vanishing at Infinity
    Mirko Tarulli
    Journal of Fourier Analysis and Applications, 2018, 24 : 1000 - 1036
  • [40] Well-posedness of boundary value problems for a certain ultraparabolic equation
    S. A. Tersenov
    Siberian Mathematical Journal, 1999, 40 : 1157 - 1169