On Non-differentiable Time-varying Optimization

被引:0
|
作者
Simonetto, Andrea [1 ]
Leus, Geert [1 ]
机构
[1] Delft Univ Technol, Fac EEMCS, NL-2826 CD Delft, Netherlands
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider non-differentiable convex optimization problems that vary continuously in time and we propose algorithms that sample these problems at specific time instances and generate a sequence of converging near-optimal decision variables. This sequence converges up to a bounded error to the solution trajectory of the time-varying non-differentiable problems. We illustrate through analytical examples and a realistic numerical simulation the benefit of the algorithms in signal processing applications, e.g., for reconstructing time-varying sparse signals.
引用
收藏
页码:505 / 508
页数:4
相关论文
共 50 条
  • [31] About non-differentiable functions
    Ben Adda, F
    Cresson, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) : 721 - 737
  • [32] Transport phenomena in nanostructures and non-differentiable space-time
    Agop, M.
    Chicos, Liliana
    Nica, P.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 803 - 814
  • [33] Implications of Non-Differentiable Entropy on a Space-Time Manifold
    Agop, Maricel
    Gavrilut, Alina
    Stefan, Gavril
    Doroftei, Bogdan
    ENTROPY, 2015, 17 (04): : 2184 - 2197
  • [34] Non-parametric Smoothing for Gradient Methods in Non-differentiable Optimization Problems
    Chakraborty, Arindam
    Roy, Arunjyoti Sinha
    Dasgupta, Bhaskar
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3759 - 3764
  • [35] Differentiable Surface Rendering via Non-Differentiable Sampling
    Cole, Forrester
    Genova, Kyle
    Sud, Avneesh
    Vlasic, Daniel
    Zhang, Zhoutong
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6068 - 6077
  • [36] 2-DIRECTION SUBGRADIENT METHOD FOR NON-DIFFERENTIABLE OPTIMIZATION PROBLEMS
    KIM, S
    KOH, S
    AHN, H
    OPERATIONS RESEARCH LETTERS, 1987, 6 (01) : 43 - 46
  • [37] Optimality conditions and duality results for non-differentiable interval optimization problems
    Bhurjee, Ajay Kumar
    Padhan, Saroj Kumar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2016, 50 (1-2) : 59 - 71
  • [38] A Differentiable Hydrology Approach for Modeling With Time-Varying Parameters
    Krapu, Christopher
    Borsuk, Mark
    WATER RESOURCES RESEARCH, 2022, 58 (09)
  • [39] Duality for a non-differentiable programming problem
    Zhang, J
    Mond, B
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (01) : 29 - 44
  • [40] 2 SPACES OF NON-DIFFERENTIABLE FUNCTIONS
    CAUTY, R
    FUNDAMENTA MATHEMATICAE, 1992, 141 (03) : 195 - 214