On the Brezis-Nirenberg problem on S3 and a conjecture of Bandle-Benguria

被引:10
作者
Chen, WY [1 ]
Wei, J
机构
[1] Wuhan Univ, Dept Math, Wuhan 430072, Hubei, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.crma.2005.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following Brezis-Nirenberg problem on S-3 -Delta(S3)u = lambda u + u(5) in D, u > 0 in D and u = 0 on aD, where D is a geodesic ball on S-3 with geodesic radius theta(1), and Delta(S3) is the Laplace-Beltrami operator on S3. We prove that for any lambda < -3/4 and for every theta(1) < pi with pi - theta(1) sufficiently small (depending on a), there exists bubbling solution to the above problem. This solves a conjecture raised by Bandle and Benguria [J. Differential Equations 178 (2002) 264-279] and Brezis and Peletier [C. R. Acad. Sci. Paris, Ser. I 339 (2004) 291-394].
引用
收藏
页码:153 / 156
页数:4
相关论文
共 9 条
[1]   The Brezis-Nirenberg problem on S [J].
Bandle, C ;
Benguria, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 178 (01) :264-279
[2]  
Bandle C, 1999, MATH ANN, V313, P83, DOI 10.1007/s002080050251
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
Brezis H., 2004, C R ACAD SCI PARIS 1, V339, P291
[5]   Two-bubble solutions in the super-critical Bahri-Coron's problem [J].
del Pino, M ;
Felmer, P ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 16 (02) :113-145
[6]   Multiple interior peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (01) :1-27
[7]   Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity Part 1:: N=3 [J].
Rey, O ;
Wei, JC .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 212 (02) :472-499
[8]  
STINGELIN SI, 2004, THESIS U BASEL
[9]  
Struwe M., 1990, Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems