Modeling forest biomass using Very-High-Resolution data - Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images

被引:41
|
作者
Maack, Joachim [1 ]
Kattenborn, Teja [2 ]
Fassnacht, Fabian Ewald [2 ]
Enssle, Fabian [1 ]
Hernandez, Jaime [3 ]
Corvalan, Patricio [3 ]
Koch, Barbara [1 ]
机构
[1] Univ Freiburg, Chair Remote Sensing & Landscape Informat Syst Fe, Freiburg, Germany
[2] Karlsruhe Inst Technol, Inst Geog & Geoecol IfGG, D-76021 Karlsruhe, Germany
[3] Univ Chile, Lab Geomat Ecol & Paisaje, Santiago, Chile
来源
EUROPEAN JOURNAL OF REMOTE SENSING | 2015年 / 48卷
关键词
Biomass modelling; WordView-2; Pleiades; random forest; photogrammetry; canopy height models; ABOVEGROUND BIOMASS; CANOPY HEIGHT; CROSS-VALIDATION; LIDAR; BOOTSTRAP;
D O I
10.5721/EuJRS20154814
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We used spectral, textural and photogrammetric information from very-high resolution (VHR) stereo satellite data (Pleiades and WorldView-2) to estimate forest biomass across two test sites located in Chile and Germany. We compared Random Forest model performances of different predictor sets (spectral, textural, and photogrammetric), forest inventory designs and filter sizes (texture information). Best model performances were obtained with photogrammetric combined with either textural or spectral information and smaller, but more field plots. Stereo-VHR images showed a great potential for canopy height model (CHM) generation and could be an adequate alternative to LiDAR and InSAR techniques.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 13 条
  • [1] Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry: (II) optimizing acquisition configurations
    Yin, Tiangang
    Montesano, Paul M.
    Cook, Bruce D.
    Chavanon, Eric
    Neigh, Christopher S. R.
    Shean, David
    Peng, Dongju
    Lauret, Nicolas
    Mkaouar, Ameni
    Regaieg, Omar
    Zhen, Zhijun
    Qin, Rongjun
    Gastellu-Etchegorry, Jean-Philippe
    Morton, Douglas C.
    REMOTE SENSING OF ENVIRONMENT, 2023, 298
  • [2] Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry: (I) methods and comparisons with actual data
    Yin, Tiangang
    Montesano, Paul M.
    Cook, Bruce D.
    Chavanon, Eric
    Neigh, Christopher S. R.
    Shean, David
    Peng, Dongju
    Lauret, Nicolas
    Mkaouar, Ameni
    Morton, Douglas C.
    Regaieg, Omar
    Zhen, Zhijun
    Gastellu-Etchegorry, Jean-Philippe
    REMOTE SENSING OF ENVIRONMENT, 2023, 298
  • [3] Biomass estimation of mixed forest landscape using a Fourier transform texture-based approach on very-high-resolution optical satellite imagery
    Singh, Minerva
    Malhi, Yadvinder
    Bhagwat, Shonil
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (09) : 3331 - 3349
  • [4] Toward a general tropical forest biomass prediction model from very high resolution optical satellite images
    Ploton, P.
    Barbier, N.
    Couteron, P.
    Antin, C. M.
    Ayyappan, N.
    Balachandran, N.
    Barathan, N.
    Bastin, J. -F.
    Chuyong, G.
    Dauby, G.
    Droissart, V.
    Gastellu-Etchegorry, J. -P.
    Kamdem, N. G.
    Kenfack, D.
    Libalah, M.
    Mofack, G., II
    Momo, S. T.
    Pargal, S.
    Petronelli, P.
    Proisy, C.
    Rejou-Mechain, M.
    Sonke, B.
    Texier, N.
    Thomas, D.
    Verley, P.
    Dongmo, D. Zebaze
    Berger, U.
    Pelissier, R.
    REMOTE SENSING OF ENVIRONMENT, 2017, 200 : 140 - 153
  • [5] Estimation of Forest Structural Diversity Using the Spectral and Textural Information Derived from SPOT-5 Satellite Images
    Meng, Jinghui
    Li, Shiming
    Wang, Wei
    Liu, Qingwang
    Xie, Shiqin
    Ma, Wu
    REMOTE SENSING, 2016, 8 (02)
  • [6] Above ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy
    Maesano, Mauro
    Santopuoli, Giovanni
    Moresi, Federico Valerio
    Matteucci, Giorgio
    Lasserre, Bruno
    Mugnozza, Giuseppe Scarascia
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2022, 15 : 451 - 457
  • [7] Improved model for estimating the biomass of Populus euphratica forest using the integration of spectral and textural features from the Chinese high-resolution remote sensing satellite GaoFen-1
    Zhang, Linjing
    Cheng, Qimin
    Lia, Congmin
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [8] Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images
    Macedo, Fabricio L.
    Sousa, Adella M. O.
    Goncalves, Ana Cristina
    Marques da Silva, Jose R.
    Mesquita, Paulo A.
    Rodrigues, Ricardo A. F.
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 932 - 944
  • [9] Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images
    Jin, Decai
    Qi, Jianbo
    Huang, Huaguo
    Li, Linyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10953 - 10963
  • [10] Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system
    Li, Wang
    Niu, Zheng
    Chen, Hanyue
    Li, Dong
    Wu, Mingquan
    Zhao, Wei
    ECOLOGICAL INDICATORS, 2016, 67 : 637 - 648