Bright solitons in fractional coupler with spatially periodical modulated nonlinearity

被引:6
作者
Li, S. R. [1 ]
Bao, Y. Y. [1 ]
Liu, Y. H. [2 ]
Xu, T. F. [1 ]
机构
[1] Yanshan Univ, Sch Sci, Hebei Key Lab Microstruct Mat Phys, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Hebei, Peoples R China
关键词
Bright solitons; Nonlinear lattice; Levy index; Fractional Schrodinger equation; SCHRODINGER-EQUATION; GAP SOLITONS; DISCRETE SOLITONS; VECTOR SOLITONS; DYNAMICS;
D O I
10.1016/j.chaos.2022.112484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study bright solitons in the fractional coupler with a spatially periodical modulated nonlinearity. The results show that the linear coupling constant kappa, Levy index alpha, chemical potential mu and nonlinear intensity g have a significant influence on the amplitude, width and stability of fundamental solitons, dipole solitons and tripole solitons. We investigate the stability of bright solitons by linear stability analysis and the real-time evolution method. It is found that the bright solitons tend to be stable with the increase of linear coupling constant, Levy index, chemical potential, and nonlinear intensity in the corresponding parameter interval. The results also show that the distance between adjacent peaks is four times of the nonlinear lattice period for dipole solitons and six times for tripole solitons. We also find that the number of soliton peaks is smaller, and the stable region is wider in the fractional coupler with the spatially periodical modulated nonlinear lattice.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Structure of optical solitons in magneto-optic waveguides with dual-power law nonlinearity using modified extended direct algebraic method [J].
Ahmed, Hamdy M. ;
Rabie, Wafaa B. .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (08)
[2]   Gap solitons and nonlinear Bloch waves in fractional quantum coupler with periodic potential [J].
Bao, Y. Y. ;
Li, S. R. ;
Liu, Y. H. ;
Xu, T. F. .
CHAOS SOLITONS & FRACTALS, 2022, 156
[3]   Variational approach for breathers in a nonlinear fractional Schrodinger equation [J].
Chen, Manna ;
Guo, Qi ;
Lu, Daquan ;
Hu, Wei .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 71 :73-81
[4]   Optical solitons, self-focusing, and wave collapse in a space-fractional Schrodinger equation with a Kerr-type nonlinearity [J].
Chen, Manna ;
Zeng, Shihao ;
Lu, Daquan ;
Hu, Wei ;
Guo, Qi .
PHYSICAL REVIEW E, 2018, 98 (02)
[5]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[6]   Nonlocal solitons in fractional dimensions [J].
Dong, Liangwei ;
Huang, Changming ;
Qi, Wei .
OPTICS LETTERS, 2019, 44 (20) :4917-4920
[7]   Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices [J].
Fleischer, JW ;
Segev, M ;
Efremidis, NK ;
Christodoulides, DN .
NATURE, 2003, 422 (6928) :147-150
[8]   Dark solitons in atomic Bose-Einstein condensates: from theory to experiments [J].
Frantzeskakis, D. J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (21)
[9]  
Herrmann R., 2014, Fractional Calculus: An Introduction for Physicists, V2nd ed., DOI [10.1142/8934, DOI 10.1142/8934]
[10]   Beam propagation management in a fractional Schrodinger equation [J].
Huang, Changming ;
Dong, Liangwei .
SCIENTIFIC REPORTS, 2017, 7