Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror

被引:32
作者
Kumar, Karthik [1 ]
Condit, Jonathan C. [2 ]
McElroy, Austin [3 ]
Kemp, Nate J. [3 ]
Hoshino, Kazunori [2 ]
Milner, Thomas E. [2 ]
Zhang, Xiaojing [2 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[3] CardioSpectra Inc, San Antonio, TX 78229 USA
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2008年 / 10卷 / 04期
关键词
optical coherence tomography (OCT); swept-source; MEMS; scanning micromirror; high-speed 3D imaging;
D O I
10.1088/1464-4258/10/4/044013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on a fibre-based forward-imaging swept-source optical coherence tomography system using a high-reflectivity two-axis microelectromechanical scanning mirror for high-speed 3D in vivo visualization of cellular-scale architecture of biological specimens. The scanning micromirrors, based on electrostatic staggered vertical comb drive actuators, can provide +/- 9 degrees of optical deflection on both rotation axes and uniform reflectivity of greater than 90% over the range of imaging wavelengths (1260-1360 nm), allowing for imaging turbid samples with good signal-to-noise ratio. The wavelength-swept laser, scanning over 100 nm spectrum at 20 kHz rate, enables fast image acquisition at 10.2 million voxels s(-1) (for 3D imaging) or 40 frames s-1 (for 2D imaging with 500 transverse pixels per image) with 8.6 mu m axial resolution. Lateral resolution of 12.5 mu m over 3 mm field of view in each lateral direction is obtained using ZEMAX optical simulations for the lateral beam scanning system across the scanning angle range of the 500 mu m x 700 mu m micromirror. We successfully acquired en face and tomographic images of rigid structures (scanning micromirror), in vitro biological samples (onion peels and pickle slices) and in vivo images of human epidermis over 2 x 1 x 4 mm(3) imaging volume in real time at faster-than-video 2D frame rates. The results indicate that our system framework may be suitable for image-guided minimally invasive examination of various diseased tissues.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging [J].
Aguirre, Aaron D. ;
Herz, Paul R. ;
Chen, Yu ;
Fujimoto, James G. ;
Piyawattanametha, Wibool ;
Fan, Li ;
Wu, Ming C. .
OPTICS EXPRESS, 2007, 15 (05) :2445-2453
[2]   Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging [J].
Bigelow, Chad E. ;
Iftimia, Nicusor V. ;
Ferguson, R. Daniel ;
Ustun, Teoman E. ;
Bloom, Benjamin ;
Hammer, Daniel X. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (05) :1327-1336
[3]   Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography [J].
Bouma, BE ;
Tearney, GJ .
OPTICS LETTERS, 1999, 24 (08) :531-533
[4]  
BREZINZKI ME, 2006, OPTICAL COHERENCE TO
[5]  
CHANGHO C, 2006, PHOTON TECHNOL LETT, V18, P133
[6]   First demonstration of a MEMS tunable vertical-cavity SOA [J].
Chen, Q ;
Cole, GD ;
Björlin, ES ;
Kimura, T ;
Wu, SM ;
Wang, CS ;
MacDonald, NC ;
Bowers, JE .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (06) :1438-1440
[7]   Optical coherence tomography using a frequency-tunable optical source [J].
Chinn, SR ;
Swanson, EA ;
Fujimoto, JG .
OPTICS LETTERS, 1997, 22 (05) :340-342
[8]   Sensitivity advantage of swept source and Fourier domain optical coherence tomography [J].
Choma, MA ;
Sarunic, MV ;
Yang, CH ;
Izatt, JA .
OPTICS EXPRESS, 2003, 11 (18) :2183-2189
[9]   In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope [J].
Flusberg, BA ;
Lung, JC ;
Cocker, ED ;
Anderson, EP ;
Schnitzer, MJ .
OPTICS LETTERS, 2005, 30 (17) :2272-2274
[10]   Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors [J].
Hah, D ;
Patterson, PR ;
Nguyen, HD ;
Toshiyoshi, H ;
Wu, MC .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10 (03) :505-513