Experimental and computational analyses reveal dynamics of tumor vessel cooption and optimal treatment strategies

被引:76
作者
Voutouri, Chrysovalantis [1 ]
Kirkpatrick, Nathaniel D. [2 ,3 ,5 ]
Chung, Euiheon [2 ,3 ,6 ]
Mpekris, Fotios [1 ]
Baish, James W. [4 ]
Munn, Lance L. [2 ,3 ]
Fukumura, Dai [2 ,3 ]
Stylianopoulos, Triantafyllos [1 ]
Jain, Rakesh K. [2 ,3 ]
机构
[1] Univ Cyprus, Dept Mech & Mfg Engn, Canc Biophys Lab, CY-1678 Nicosia, Cyprus
[2] Massachusetts Gen Hosp, Dept Radiat Oncol, Edwin L Steele Labs, Boston, MA 02114 USA
[3] Harvard Med Sch, Boston, MA 02114 USA
[4] Bucknell Univ, Dept Biomed Engn, Lewisburg, PA 17837 USA
[5] Novartis Inst BioMed Res, Cambridge, MA 02139 USA
[6] Gwangju Inst Sci & Technol, Inst Integrated Technol, Dept Biomed Sci & Engn, Gwangju 61005, South Korea
基金
欧洲研究理事会;
关键词
antiangiogenic treatment; glioblastoma; hypoxia; VEGF; Ang2; ENDOTHELIAL GROWTH-FACTOR; INTERSTITIAL FLUID PRESSURE; NON-ANGIOGENIC TUMORS; PROLONGS SURVIVAL; VASCULAR NORMALIZATION; MATHEMATICAL-MODEL; BLOOD-VESSELS; CANCER-CELLS; SOLID TUMORS; IN-VIVO;
D O I
10.1073/pnas.1818322116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without-or before-angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood. Here, we analyzed the dynamics of vessel cooption during tumor progression and in response to antiangiogenic treatment in gliomas and brain metastases. We followed tumor evolution during escape from antiangiogenic treatment as cancer cells coopted, and apparently mechanically compressed, host vessels. To gain deeper understanding, we developed a mathematical model, which incorporated compression of coopted vessels, resulting in hypoxia and formation of new vessels by angiogenesis. Even if antiangiogenic therapy can block such secondary angiogenesis, the tumor can sustain itself by coopting existing vessels. Hence, tumor progression can only be stopped by combination therapies that judiciously block both angiogenesis and cooption. Furthermore, the model suggests that sequential blockade is likely to be more beneficial than simultaneous blockade.
引用
收藏
页码:2662 / 2671
页数:10
相关论文
共 58 条
[1]   Imaging of Angiotropism/Vascular Co-Option in a Murine Model of Brain Melanoma: Implications for Melanoma Progression along Extravascular Pathways [J].
Bentolila, Laurent A. ;
Prakash, Roshini ;
Mihic-Probst, Daniela ;
Wadehra, Madhuri ;
Kleinman, Hynda K. ;
Carmichael, Thomas S. ;
Peault, Bruno ;
Barnhill, Raymond L. ;
Lugassy, Claire .
SCIENTIFIC REPORTS, 2016, 6
[2]   Genes that mediate breast cancer metastasis to the brain [J].
Bos, Paula D. ;
Zhang, Xiang H. -F. ;
Nadal, Cristina ;
Shu, Weiping ;
Gomis, Roger R. ;
Nguyen, Don X. ;
Minn, Andy J. ;
van de Vijver, Marc J. ;
Gerald, William L. ;
Foekens, John A. ;
Massague, Joan .
NATURE, 2009, 459 (7249) :1005-U137
[3]   Mathematical Modelling of a Brain Tumour Initiation and Early Development: A Coupled Model of Glioblastoma Growth, Pre-Existing Vessel Co-Option, Angiogenesis and Blood Perfusion [J].
Cai, Yan ;
Wu, Jie ;
Li, Zhiyong ;
Long, Quan .
PLOS ONE, 2016, 11 (03)
[4]   Observation of incipient tumor angiogenesis that is independent of hypoxia and hypoxia inducible factor-1 activation [J].
Cao, YT ;
Li, CY ;
Moeller, BJ ;
Yu, DH ;
Zhao, YL ;
Dreher, MR ;
Shan, SQ ;
Dewhirst, MW .
CANCER RESEARCH, 2005, 65 (13) :5498-5505
[5]   Molecular mechanisms and clinical applications of angiogenesis [J].
Carmeliet, Peter ;
Jain, Rakesh K. .
NATURE, 2011, 473 (7347) :298-307
[6]   VARIATIONS IN TUMOR-CELL GROWTH-RATES AND METABOLISM WITH OXYGEN CONCENTRATION, GLUCOSE-CONCENTRATION, AND EXTRACELLULAR PH [J].
CASCIARI, JJ ;
SOTIRCHOS, SV ;
SUTHERLAND, RM .
JOURNAL OF CELLULAR PHYSIOLOGY, 1992, 151 (02) :386-394
[7]   Mathematical modelling of angiogenesis [J].
Chaplain, MAJ .
JOURNAL OF NEURO-ONCOLOGY, 2000, 50 (1-2) :37-51
[8]   Glioblastoma Recurrence after Cediranib Therapy in Patients: Lack of "Rebound" Revascularization as Mode of Escape [J].
di Tomaso, Emmanuelle ;
Snuderl, Matija ;
Kamoun, Walid S. ;
Duda, Dan G. ;
Auluck, Pavan K. ;
Fazlollahi, Ladan ;
Andronesi, Ovidiu C. ;
Frosch, Matthew P. ;
Wen, Patrick Y. ;
Plotkin, Scott R. ;
Hedley-Whyte, E. Tessa ;
Sorensen, A. Gregory ;
Batchelor, Tracy T. ;
Jain, Rakesh K. .
CANCER RESEARCH, 2011, 71 (01) :19-28
[9]   Non-angiogenic tumours and their influence on cancer biology [J].
Donnem, Tom ;
Reynolds, Andrew R. ;
Kuczynski, Elizabeth A. ;
Gatter, Kevin ;
Vermeulen, Peter B. ;
Kerbel, Robert S. ;
Harris, Adrian L. ;
Pezzella, Francesco .
NATURE REVIEWS CANCER, 2018, 18 (05) :323-336
[10]   Tumor induction of VEGF promoter activity in stromal cells [J].
Fukumura, D ;
Xavier, R ;
Sugiura, T ;
Chen, Y ;
Park, EC ;
Lu, NF ;
Selig, M ;
Nielsen, G ;
Taksir, T ;
Jain, RK ;
Seed, B .
CELL, 1998, 94 (06) :715-725