A fast-manifold approach to Melnikov functions for slowly varying oscillators

被引:7
作者
Chen, SL
Shaw, SW
机构
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 08期
关键词
D O I
10.1142/S021812749600093X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new approach to obtaining the Melnikov function for homoclinic orbits in slowly varying oscillators is proposed. The present method applies the usual two-dimensional Melnikov analysis to the ''fast'' dynamics of the system which lie on an invariant manifold. It is shown that the resultant Melnikov function is the same as that obtained in the usual way involving distance functions in three dimensions [Wiggins and Holmes, 1987]. This alternative derivation provides some useful insight into the structure of the dynamical system.
引用
收藏
页码:1575 / 1578
页数:4
相关论文
共 8 条
[1]  
Carr J., 1981, APPL CTR MANIFOLD TH
[2]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[3]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[4]  
John F., 1982, Partial differential equations
[5]   HOMOCLINIC ORBITS IN SLOWLY VARYING OSCILLATORS [J].
WIGGINS, S ;
HOLMES, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :612-629
[6]   CORRECTION [J].
WIGGINS, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (05) :1254-1255
[7]  
WIGGINS S, 1992, CHAOTIC TRANSPORT DY
[8]  
WIGGINS S, 1988, GLOBAL BIFURCATIONS