Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries

被引:14
|
作者
Wang, Jingfeng [1 ]
Xie, Junjie [2 ]
Jiang, Yanmei [3 ]
Zhang, Jingjing [1 ]
Wang, Yingguo [1 ]
Zhou, Zhongfu [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Sate Key Lab High Performance Ceram & Superfine, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SURFACE-AREA; ANATASE; INSERTION; ELECTRODE; PERFORMANCE; STORAGE; NANOTUBES;
D O I
10.1007/s10853-015-9172-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
TiO2-B nanowires with remarkable mesoporous structure via a template-free low-temperature hydrothermal fabrication route have been prepared by employing titanium glycolate (TG) as a precursor. The formation of mesopores in TiO2-B nanowires is caused by the evolvement of vacancies derived from the chains of TG. The product is characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption-desorption, and electron microscopy. The lithium-ion storage capacity of mesoporous TiO2-B nanowires is evaluated by galvanostatic measurements. The initial discharge-charge capacities of the material are 310 and 231 mAh g(-1) at a current density of 50 mA g(-1), respectively. A discharge capacity of 198 mAh g(-1) is still retained when charge-discharge at 1.0 A g(-1) for 50 cycles, demonstrating the high-rate performance and good cycle ability. The large reversible capacity, high-rate performance, and good cycle ability of the material are attributed to unique mesoporous structure and intrinsic properties of the TiO2-B nanowires. The mesoporous TiO2-B nanowire synthesized from TG is promising for use as an anode material for lithium-ion batteries with high power and energy densities.
引用
收藏
页码:6321 / 6328
页数:8
相关论文
共 50 条
  • [31] Hierarchical α-MnO2 nanowires as an efficient anode material for rechargeable lithium-ion batteries
    Umeshbabu, Ediga
    Satyanarayana, M.
    Karkera, Guruprakash
    Pullamsetty, Ashok
    Justin, P.
    MATERIALS ADVANCES, 2022, 3 (03): : 1642 - 1651
  • [32] Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate
    Zhao, Bin
    Chen, Feng
    Liu, Hongqi
    Zhang, Jinlong
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2011, 72 (03) : 201 - 206
  • [33] Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study
    Arrouvel, Corinne
    Parker, Stephen C.
    Islam, M. Saiful
    CHEMISTRY OF MATERIALS, 2009, 21 (20) : 4778 - 4783
  • [34] Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries
    Huang, Man-Xia
    Sun, Yan-Hui
    Guan, Dong-Cai
    Nan, Jun-Min
    Cai, Yue-Peng
    IONICS, 2019, 25 (12) : 5745 - 5757
  • [35] Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries
    Man-Xia Huang
    Yan-Hui Sun
    Dong-Cai Guan
    Jun-Min Nan
    Yue-Peng Cai
    Ionics, 2019, 25 : 5745 - 5757
  • [36] MoO2-Ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium-Ion Batteries
    Zeng, Lingxing
    Zheng, Cheng
    Deng, Cuilin
    Ding, Xiaokun
    Wei, Mingdeng
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (06) : 2182 - 2187
  • [37] An anode material of CrN for lithium-ion batteries
    Sun, Qian
    Fu, Zheng-Wen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) : A189 - A193
  • [38] Control Growth of Mesoporous Nickel Tungstate Nanofiber and Its Application as Anode Material for Lithium-Ion Batteries
    Peng, Tao
    Liu, Chang
    Hou, Xiaoyi
    Zhang, Zongwen
    Wang, Chunlei
    Yan, Hailong
    Lu, Yang
    Liu, Xianming
    Luo, Yongsong
    ELECTROCHIMICA ACTA, 2017, 224 : 460 - 467
  • [39] Nanotubes as anode material for lithium-ion batteries
    Loutfy, RO
    Hossain, S
    Moravsky, A
    Saleh, M
    PERSPECTIVES OF FULLERENE NANOTECHNOLOGY, 2002, : 341 - 355
  • [40] Preparation and properties of TiO2(B)/graphene nanocomposites as anode materials fo lithium-ion batteries
    Tang, Yiping
    Wang, Shiming
    Ding, Jiafeng
    Hou Guangya
    Zheng, Guoqu
    MATERIALS RESEARCH AND APPLICATIONS, PTS 1-3, 2014, 875-877 : 183 - 186