Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries

被引:14
|
作者
Wang, Jingfeng [1 ]
Xie, Junjie [2 ]
Jiang, Yanmei [3 ]
Zhang, Jingjing [1 ]
Wang, Yingguo [1 ]
Zhou, Zhongfu [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Sate Key Lab High Performance Ceram & Superfine, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SURFACE-AREA; ANATASE; INSERTION; ELECTRODE; PERFORMANCE; STORAGE; NANOTUBES;
D O I
10.1007/s10853-015-9172-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
TiO2-B nanowires with remarkable mesoporous structure via a template-free low-temperature hydrothermal fabrication route have been prepared by employing titanium glycolate (TG) as a precursor. The formation of mesopores in TiO2-B nanowires is caused by the evolvement of vacancies derived from the chains of TG. The product is characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption-desorption, and electron microscopy. The lithium-ion storage capacity of mesoporous TiO2-B nanowires is evaluated by galvanostatic measurements. The initial discharge-charge capacities of the material are 310 and 231 mAh g(-1) at a current density of 50 mA g(-1), respectively. A discharge capacity of 198 mAh g(-1) is still retained when charge-discharge at 1.0 A g(-1) for 50 cycles, demonstrating the high-rate performance and good cycle ability. The large reversible capacity, high-rate performance, and good cycle ability of the material are attributed to unique mesoporous structure and intrinsic properties of the TiO2-B nanowires. The mesoporous TiO2-B nanowire synthesized from TG is promising for use as an anode material for lithium-ion batteries with high power and energy densities.
引用
收藏
页码:6321 / 6328
页数:8
相关论文
共 50 条
  • [21] Hydrogen titanate and TiO2 nanowires as anode materials for lithium-ion batteries
    Wu, Feixiang
    Wang, Zhixing
    Li, Xinhai
    Guo, Huajun
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) : 12675 - 12681
  • [22] First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries
    Kong Ling-Ming
    Zhu Bao-Lin
    Pang Xian-Yong
    Wang Gui-Chang
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (03) : 656 - 664
  • [23] TiO2-B nanowires via topological conversion with enhanced lithium-ion intercalation properties
    Zhang, Weifeng
    Zhang, Ying
    Yu, Ling
    Wu, Nae-Lih
    Huang, Haitao
    Wei, Mingdeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) : 3842 - 3847
  • [24] TiO2-CNTs grown on titanium as an anode layer for lithium-ion batteries
    Lo, Wen-Chi
    Su, Shih-Hsuan
    Chu, Hou-Jen
    He, Ju-Liang
    SURFACE & COATINGS TECHNOLOGY, 2018, 337 : 544 - 551
  • [25] Mesoporous TiO2 Spheres/Graphene Composite as a High-Performance Anode Material for Lithium-ion Batteries
    Du, Tianyu
    Zhang, Weixing
    Peng, Han
    Jain, Gaurav
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (07): : 6229 - 6235
  • [26] Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries
    Wu, MS
    Chiang, PCJ
    ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (03) : 383 - 388
  • [27] Electrochemical Investigations on TiO2-B Nanowires as a Promising High Capacity Anode for Sodium-ion Batteries
    Lee, Jeongyeon
    Lee, Joong Kee
    Chung, Kyung Yoon
    Jung, Hun-Gi
    Kim, Haesik
    Mun, Junyoung
    Choi, Wonchang
    ELECTROCHIMICA ACTA, 2016, 200 : 21 - 28
  • [28] Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries
    Qiu, Danfeng
    Xu, Zijing
    Zheng, Mingbo
    Zhao, Bin
    Pan, Lijia
    Pu, Lin
    Shi, Yi
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (05) : 1889 - 1892
  • [29] Mesoporous titania rods as an anode material for high performance lithium-ion batteries
    Jiang, Yan-Mei
    Wang, Kai-Xue
    Guo, Xing-Xing
    Wei, Xiao
    Wang, Jing-Feng
    Chen, Jie-Sheng
    JOURNAL OF POWER SOURCES, 2012, 214 : 298 - 302
  • [30] Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries
    Danfeng Qiu
    Zijing Xu
    Mingbo Zheng
    Bin Zhao
    Lijia Pan
    Lin Pu
    Yi Shi
    Journal of Solid State Electrochemistry, 2012, 16 : 1889 - 1892