Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network

被引:24
作者
Lu, Feng-Yu [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
Wang, Chao [1 ,3 ]
Cui, Chao-Han [1 ,3 ]
Teng, Jun [1 ,3 ]
Wang, Shuang [1 ,3 ]
Chen, Wei [1 ,3 ]
Huang, Wei [2 ]
Xu, Bing-Jie [2 ]
Guo, Guang-Can [1 ,3 ]
Han, Zheng-Fu [1 ,3 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, CAS, Hefei 230026, Anhui, Peoples R China
[2] Inst Southwestern Commun, Sci & Technol Commun Secur Lab, Chengdu 610041, Sichuan, Peoples R China
[3] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
基金
中国国家自然科学基金;
关键词
31;
D O I
10.1364/JOSAB.36.000B92
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Selection of parameters (e.g., the probability of choosing an X-basis or Z-basis, the intensity of signal state and decoy state, etc.) and system calibrating are more challenging when the number of users of a measurementdevice-independent quantum key distribution (MDI-QKD) network increases. At present, optimization algorithms are usually employed when searching for the best parameters. This method can find the optimized parameters accurately, but it may take a lot of time and hardware resources. This is a big problem in a large-scale MDI-QKD network. Here, we present, to the best of our knowledge, a new method, using a back propagation artificial neural network (BPNN) to predict, rather than search, the optimized parameters. Compared to optimization algorithms, our BPNN is faster and more lightweight, and it can save system resources. Another big problem brought by large-scale MDI-QKD networks is system recalibration. BPNN can support this work in real time, and it only needs to use some discarded data generated from the communication process, rather than adding additional devices or scanning the system. (C) 2019 Optical Society of America
引用
收藏
页码:B92 / B98
页数:7
相关论文
共 31 条
  • [1] [Anonymous], 2001, MSc Thesis
  • [2] Limitations on practical quantum cryptography
    Brassard, G
    Lütkenhaus, N
    Mor, T
    Sanders, BC
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (06) : 1330 - 1333
  • [3] Finite-key analysis for measurement-device-independent quantum key distribution
    Curty, Marcos
    Xu, Feihu
    Cui, Wei
    Lim, Charles Ci Wen
    Tamaki, Kiyoshi
    Lo, Hoi-Kwong
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [4] Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
  • [5] A quantum access network
    Froehlich, Bernd
    Dynes, James F.
    Lucamarini, Marco
    Sharpe, Andrew W.
    Yuan, Zhiliang
    Shields, Andrew J.
    [J]. NATURE, 2013, 501 (7465) : 69 - +
  • [6] Phase-remapping attack in practical quantum-key-distribution systems
    Fung, Chi-Hang Fred
    Qi, Bing
    Tamaki, Kiyoshi
    Lo, Hoi-Kwong
    [J]. PHYSICAL REVIEW A, 2007, 75 (03):
  • [7] Full-field implementation of a perfect eavesdropper on a quantum cryptography system
    Gerhardt, Ilja
    Liu, Qin
    Lamas-Linares, Anta
    Skaar, Johannes
    Kurtsiefer, Christian
    Makarov, Vadim
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [8] AN INTRODUCTION TO NEURAL COMPUTING
    KOHONEN, T
    [J]. NEURAL NETWORKS, 1988, 1 (01) : 3 - 16
  • [9] Liu H., 2018, ARXIV180808584
  • [10] Experimental Measurement-Device-Independent Quantum Key Distribution
    Liu, Yang
    Chen, Teng-Yun
    Wang, Liu-Jun
    Liang, Hao
    Shentu, Guo-Liang
    Wang, Jian
    Cui, Ke
    Yin, Hua-Lei
    Liu, Nai-Le
    Li, Li
    Ma, Xiongfeng
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Zhang, Qiang
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (13)