Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps

被引:110
作者
Aslan, Gokhan [1 ]
Foumelis, Michael [1 ]
Raucoules, Daniel [1 ]
De Michele, Marcello [1 ]
Bernardie, Severine [1 ]
Cakir, Ziyadin [2 ]
机构
[1] French Geol Survey BRGM, Nat Risk Dept, F-45000 Orleans, France
[2] Istanbul Tech Univ ITU, Dept Geol Engn, TR-34467 Istanbul, Turkey
关键词
landslide; InSAR; PSI; French Alps; inventory mapping; limitations; slope; aspect; SAR INTERFEROMETRY; PERMANENT SCATTERERS; ALOS/PALSAR IMAGERY; MAPS; BAND; DISPLACEMENTS; PERFORMANCE; KINEMATICS; INVENTORY; ALGORITHM;
D O I
10.3390/rs12081305
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Continuous geodetic measurements in landslide prone regions are necessary to avoid disasters and better understand the spatiotemporal and kinematic evolution of landslides. The detection and characterization of landslides in high alpine environments remains a challenge associated with difficult accessibility, extensive coverage, limitations of available techniques, and the complex nature of landslide process. Recent studies using space-based observations and especially Persistent Scatterer Interferometry (PSI) techniques with the integration of in-situ monitoring instrumentation are providing vital information for an actual landslide monitoring. In the present study, the Stanford Method for Persistent Scatterers InSAR package (StaMPS) is employed to process the series of Sentinel 1-A and 1-B Synthetic Aperture Radar (SAR) images acquired between 2015 and 2019 along ascending and descending orbits for the selected area in the French Alps. We applied the proposed approach, based on extraction of Active Deformation Areas (ADA), to automatically detect and assess the state of activity and the intensity of the suspected slow-moving landslides in the study area. We illustrated the potential of Sentinel-1 data with the aim of detecting regions of relatively low motion rates that be can attributed to activate landslide and updated pre-existing national landslide inventory maps on a regional scale in terms of slow moving landslides. Our results are compared to pre-existing landslide inventories. More than 100 unknown slow-moving landslides, their spatial pattern, deformation rate, state of activity, as well as orientation are successfully identified over an area of 4000 km(2) located in the French Alps. We also address the current limitations due the nature of PSI and geometric characteristic of InSAR data for measuring slope movements in mountainous environments like Alps.
引用
收藏
页数:22
相关论文
共 74 条
[1]   Multi-Temporal InSAR Analysis for Monitoring Ground Deformation in Amorgos Island, Greece [J].
Alatza, Stavroula ;
Papoutsis, Ioannis ;
Paradissis, Demitris ;
Kontoes, Charalampos ;
Papadopoulos, Gerassimos A. .
SENSORS, 2020, 20 (02)
[2]  
Aleotti P, 1999, B ENG GEOL ENVIRON, V58, P21, DOI [DOI 10.1007/S100640050066, 10.1007/s100640050066]
[3]   Space-Borne and Ground-Based InSAR Data Integration: The Åknes Test Site [J].
Bardi, Federica ;
Raspini, Federico ;
Ciampalini, Andrea ;
Kristensen, Lene ;
Rouyet, Line ;
Lauknes, Tom Rune ;
Frauenfelder, Regula ;
Casagli, Nicola .
REMOTE SENSING, 2016, 8 (03)
[4]   A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images [J].
Barra, Anna ;
Solari, Lorenzo ;
Bejar-Pizarro, Marta ;
Monserrat, Oriol ;
Bianchini, Silvia ;
Herrera, Gerardo ;
Crosetto, Michele ;
Sarro, Roberto ;
Gonzalez-Alonso, Elena ;
Maria Mateos, Rosa ;
Liguerzana, Sergio ;
Lopez, Carmen ;
Moretti, Sandro .
REMOTE SENSING, 2017, 9 (10)
[5]   Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data [J].
Bejar-Pizarro, Marta ;
Notti, Davide ;
Mateos, Rosa M. ;
Ezquerro, Pablo ;
Centolanza, Giuseppe ;
Herrera, Gerardo ;
Bru, Guadalupe ;
Sanabria, Margarita ;
Solari, Lorenzo ;
Duro, Javier ;
Fernandez, Jose .
REMOTE SENSING, 2017, 9 (09)
[6]   Statistical comparison of InSAR tropospheric correction techniques [J].
Bekaert, D. P. S. ;
Walters, R. J. ;
Wright, T. J. ;
Hooper, A. J. ;
Parker, D. J. .
REMOTE SENSING OF ENVIRONMENT, 2015, 170 :40-47
[7]   A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms [J].
Berardino, P ;
Fornaro, G ;
Lanari, R ;
Sansosti, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (11) :2375-2383
[8]   Landslide Activity Maps Generation by Means of Persistent Scatterer Interferometry [J].
Bianchini, Silvia ;
Herrera, Gerardo ;
Maria Mateos, Rosa ;
Notti, Davide ;
Garcia, Inmaculada ;
Mora, Oscar ;
Moretti, Sandro .
REMOTE SENSING, 2013, 5 (12) :6198-6222
[9]   Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry [J].
Bianchini, Silvia ;
Cigna, Francesca ;
Righini, Gaia ;
Proietti, Chiara ;
Casagli, Nicola .
ENVIRONMENTAL EARTH SCIENCES, 2012, 67 (04) :1155-1172
[10]   Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis [J].
Bovenga, F. ;
Wasowski, J. ;
Nitti, D. O. ;
Nutricato, R. ;
Chiaradia, M. T. .
REMOTE SENSING OF ENVIRONMENT, 2012, 119 :272-285